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EXECUTIVE SUMMARY 

A wide variety of advanced technological tools have been implemented throughout Georgia’s 

transportation network to increase its efficiency. These systems are credited with reducing or 

maintaining freeway congestion levels in light of increasing travel demands. In Georgia these 

benefits are primarily gained through the Traffic Management Center’s freeway monitoring and 

quick response in ridding the roadway of any obstacles that may reduce freeway service levels. 

There have been a number of efforts to leverage the work done by TMCs to provide travelers 

with more current traffic information such as Georgia 511 and Navigator. In addition, private 

efforts and partnerships have made the TMC’s information more accessible to travelers, aiding 

their traveler decisions. The effort presented in this report aims to compliment real-time freeway 

information by addressing the more limited availability of real-time arterial performance meas-

ures.  

This research project explores the feasibility of integrating real-time data streams with an 

arterial simulation to support an arterial performance monitoring system.  Such information will 

facilitate increased efficiency in facility utilization by enabling more informed decisions in the 

use and management of Georgia’s transportation facilities. This objective was accomplished by 

undertaking the following tasks:  

1. Describe the current state of practice concerning the estimation of real-time ar-

terial performance measures.   

2. Develop a federated (integrated) simulation test-bed for testing procedures and al-

gorithms.  
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3. Determine the feasibility of integrating point sensor data with simulation to create 

a data-driven, on-line simulation tool. 

4. Develop procedures and algorithms to calibrate an on-line simulation tool that es-

timates of travel time and other performance measures in real-time.   

5. Determine any potential improvements in travel time estimation resulting from 

sensors placed in atypical locations, such immediately downstream of an intersec-

tion. 

6. Field-test the data-driven, on-line arterial simulation tool on a target corridor.   

7. Devise method(s) to deliver travel time and other operational characteristics to 

GDOT and the general public. .   

These tasks lead to the following findings. 

Description of the Current State of Practice 

Efforts related to estimating performance measures along freeways and arterial are presented as 

lessons from those experiences inform the development of the methodology used to accomplish 

the research objective. A series of mathematical techniques is also be explored as previous re-

searchers have developed performance measure estimation techniques based on vehicular input 

onto roadways. In addition to these techniques and methodologies, efforts that involve real-time, 

data-driven simulations, outside the transportation industry are explored.   
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Simulated Test Bed Environment 

The first step in developing the real-time, data-driven microscopic simulation tool was the con-

struction of such a framework in a laboratory environment (Task 2). To achieve this, the team 

federated (integrated) two simulation instances to be used as a test bed. VISSIM is employed to 

represent the two simulation instances. These two simulation instances, referred to as the “refer-

ence world” and “modeled-world” have the same roadway and signal timing configuration. The 

primary aim of this test bed was to determine if the modeled-world reflects the reference-world 

performance measures when driven by point sensor data from the reference-world, i.e. data simi-

lar to that streamed by field detectors. For the simulated test-bed, point sensor data included 

time, vehicle speed, and location. It was seen using this test bed that the underlying real time ap-

proach could be successful in a simulated environment. In addition, the simulated test bed 

enabled subsequent tasks through the development of the ability to utilize data streams to suc-

cessfully drive a VISSIM simulation during runtime.   

 

Federation of Real-Time Detector Stream with Simulation   

A “hardware-in-the-loop” framework was developed that directly inputs detector data into a si-

mulation model during runtime (task 3). Successful integration of the data stream with VISSIM 

enabled a field evaluation of the framework on an arterial using streaming point sensor data. A 

key attribute of the federation is the ability for the simulation to receive a PVR (per vehicle 

record) detector data stream in a real-time, allowing for the use of multiple detector technologies.  

  



 

5 

 

 Real-Time, Data-Driven Arterial Simulation Algorit hms 

The arterial simulation algorithms provide the proposed framework with the necessary mechan-

isms to ensure that simulated performance measures reflect those of the field (Task 4).  It is an-

ticipated that a number of assumptions about the field traffic system parameters (e.g. turning 

movement percentages) will change as time progresses. For the performance measures from the 

simulated environment to remain aligned with those of the field, a series of algorithms and tech-

niques are developed to as part of the real time platform. Two primary areas in which significant 

advances were made are in the placement and integration of point sensor data and model calibra-

tion. 

The point sensor technology implemented throughout the test bed is capable of extracting 

and streaming a number of different traffic related data. Therefore, it was necessary to identify 

which data combination is best suited to aid in the accurate estimation of current performance 

measures (Task 2 and Task 4). In addition, the most suitable location for each point sensor is also 

explored (Task 5). The location of each detector is important as it dictates the type of data ex-

tracted from the roadway. For example, a mid-block detection is more suitable for speed detec-

tion while stop-bar detection is suited for vehicle presence detection. It was seen in this effort 

that simulation boundary detectors (i.e. detectors in the field placed at the boundary of the simu-

lated area) are critical to the success of the simulation. It was also noted where advances in inter-

section detection are needed to allow for a better pairing of simulated vehicle travel paths with 

vehicles in the field.         
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It was shown that a number of parameters will need adjustments to ensure that the esti-

mated performance measures alignment with those of the field (Task 4 and Task 6). It is antic-

ipated that real time adjustments will be indicated by the differences in performance measures 

that will be collected from the real world and the simulated environment. A calibration process is 

presented for adjusting VISSIM’s calibration parameters in which the underlying performance 

measure distribution is considered rather than a simple mean of the performance measure.  This 

more robust calibration procedure enables a more accurate real-time simulation environment.  

The significant role played my pedestrians and the need for a model to accurately account for 

pedestrian activity is investigated and discussed.  It is seen that relying on default simulation pa-

rameters to model pedestrian behavior can result in simulated pedestrian behavior significantly 

different from that of pedestrians in the field.   

 

Real-World Test-Bed and Field Test  

Integral to the creation of a test bed (Task 6) are detectors that are capable of streaming traffic 

data in real-time to a central server. The developed test bed utilized video detection systems ca-

pable of streaming per vehicle records. The primary data transmitted included detection time-

stamp, presence, speed, location, and lane number. This data was sent to a central server respon-

sible for data processing and transmitting the data to the VISSIM client.  Utilizing this test bed 

several real time simulation experiments were undertaken.  These experiments demonstrated the 

ability of the real time simulation, for the given system, to provide reasonable estimates of travel 

time.  However, in several instances difference were noted. These difference where attributed to 
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several causes: detector errors at simulation boundary detectors resulting in volume discrepan-

cies between the simulation and field, differences between individual vehicle turning movements 

in the field and simulated environment, challenges in the synchronization of field and simulated 

signal indications, model calibration, and downstream congestion influencing simulations boun-

dary conditions. Future efforts will seek to continue to improvement the real time environment in 

each of these areas. 

To test the proposed real-time approach in an environment that allowed for eliminating or 

significantly reducing the errors resulting from the proceeding issues a “pseudo” real time field 

test was undertaking using the FHWA Next Generation Simulation (NGSIM) program. The 

NGSIM program created high fidelity data sets intended for use in the study of traffic behavior 

and the development of the next generation of traffic simulation tools and algorithms. Utilizing 

this data set to create a pseudo real time data stream it is seen that the real time approach is capa-

ble of providing accurate performance measures given high quality data inputs.  Future efforts 

will seek to explore the relationship between degradations in data accuracy and performance 

measure estimates. 

 

Real-Time Presentation of Arterial Performance Measures  

Finally, a web-based interface was developed presenting the arterial performance measures in 

real time. The data generated by the simulation is polled in real-time to generate time space dia-

grams and summary charts and statistics of the various performance measures. An animated re-

presentation of traffic moving through the study corridor is also provided  
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1   INTRODUCTION 

1.1 Background and Motivation 

Traffic congestion is a one hundred billion dollar problem in the US. In 2010, Americans spent 

approximately five billion additional hours and purchased an estimated two billion gallons of 

additional gas due to congestion. The State of Georgia has shared in these congestion challenges. 

For example, in Atlanta, 116 million hours was spent in congestion, which resulted in the pur-

chase of approximately 53 million gallons of excess fuel.  In total, the cost of congestion to At-

lanta’s traveling population was approximately two and half billion dollars in 2010. [1] 

Like the United States, Atlanta’s cost of congestion has been trending upwards over the 

last few decades, Figure 1. Also like the United States, Georgia has been taking strides to reduce 

congestion levels.   
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Figure 1 Total Cost of Congestion in the United States and Atlanta, GA [1] 

 

This research project explores the feasibility of integrating real-time data streams with an 

arterial simulation. Such an integration is geared towards providing the Georgia Department of 

Transportation (GDOT) and the public with current estimates of arterial performance measures. 

This additional information will facilitate increased efficiency in facility utilization by enabling 

more informed decisions in the use and management of Georgia’s transportation facilities. To 

accomplish this, the research team utilizes fixed sensors in the development of an online, data-

driven, microscopic traffic simulation tool to determine and provide arterial performance meas-

ures.      
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1.2 Problem Statement 

A wide variety of advanced technological tools have been implemented throughout Georgia’s 

transportation network to increase the efficiency. Some of these tools include Advance Traffic 

Control System (ATCS), Advance Traffic Management Systems (ATMS), Advanced Traveler 

information System (ATIS), and Ramp Metering and Managed Lane Strategies. Currently, these 

systems are credited with reducing or maintaining freeway congestion levels in light of increas-

ing travel demands. In Georgia these benefits are primarily gained through the Traffic Manage-

ment Center’s freeway monitoring and quick response in ridding the roadway of any obstacles 

that may reduce freeway service levels. There have been a number of efforts to leverage the 

work done by TMCs to provide travelers with more current traffic information such as Georgia 

511 / Navigator [2]. In addition, private efforts and partnerships with companies such as Google, 

NAVTEQ, and INRIX have made the TMC’s information more accessible to travelers, aiding 

their traveler decisions [3–6]. This effort aims to compliment real-time freeway information by 

addressing the lack of available real-time arterial performance measures.  

In comparison to the vast investments in equipping freeways with advance technology to 

improve mobility widespread outfitting of arterials with similar technologies in its early stages.  

Successful ITS arterial deployments include both advance and adaptive traffic signal control sys-

tems and various surveillance efforts. The benefits of these limited deployments range from a 

reduction in the number of stops along an arterial segment to increases in traveler satisfaction 

[2]. Also, more recently, real-time traffic information providers have been supplying information 

regarding traffic condition along arterials, the accuracy of which is still being improved.   
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Table 1 and Table 2 highlight the current differences in the ITS related benefits expe-

rienced by travelers on arterials and freeways, respectively. The difference in disseminating ITS 

information to the traveling public is noticeable. Table 2, referring to freeways, demonstrates that 

presenting traffic information to the travelling public has positive impacts on safety, mobility, 

and customer satisfaction. From Table 1 (referring to arterials) one notices that there is insuffi-

cient data to support a conclusion regarding the benefits of disseminating traffic information to 

the travelling public along arterials. One of the reasons for this lack of conclusion is that infor-

mation disseminated is very limited. Of the arterial streets network in the nation’s largest 108 

metropolitan areas, arterial traffic information is only available for approximately two percent of 

the network miles [2]. This effort seeks to address this lack of available real-time arterial traffic 

information and aid in the realization of all possible benefits that may be experienced by poten-

tial travelers, drivers and transportation facility managers.   
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Table 1 ITS Arterial Management Benefits Summary [2] 
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Table 2 ITS Freeway Management Benefits Summary [2]   

 

1.3 Research Objective 

As stated the overall objective of this research is to determine the feasibility of integrating real-

time data with an arterial simulation to estimate performance measures in real-time and provide 

such information to facility managers and travelers. This objective was accomplished by under-

taking the following tasks:  

1. Describe the current state of practice concerning the estimation of real-time ar-

terial performance measures.   

2. Develop a federated (integrated) simulation test-bed for testing procedures and al-

gorithms.  
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3. Determine the feasibility of integrating point sensor data with simulation to create 

a data-driven, on-line simulation tool. 

4. Develop procedures and algorithms to calibrate an on-line simulation tool that es-

timates of travel time and other performance measures in real-time.   

5. Determine any potential improvements in travel time estimation resulting from 

sensors placed in atypical locations, such immediately downstream of an intersec-

tion. 

6. Field-test the data-driven, on-line arterial simulation tool on a target corridor.   

7. Devise method(s) to deliver travel time and other operational characteristics to 

GDOT and the general public. .   

1.4 Organization of Report 

The organization of the remaining report is as follows. Chapter 2, Literature Review, provides a 

comprehensive review of previous work that made strides towards estimating arterial perfor-

mance measures and highlights how this effort will build upon these previous efforts. Chapter 3, 

Methodology, presents the methodology that has been developed to achieve the objectives of this 

research project. Chapter 4, TRTI Transportation Run-Time Infrastructure, highlights the details 

of the integral communication mechanism developed for the project to manage data transmission 

amongst the various components of the system. Chapter 5, Experimentation and Evaluation, de-

tails the execution and results of number field experiments that were used to validate the devel-

oped methodology. Chapter 6, Advanced Model Calibration Procedure, summarizes a procedure 
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that was developed to calibrate a VISSIM simulation model. Chapter 7, Modeling Pedestrian 

Behavior, gives insight into how to address the issue of pedestrian-vehicle interaction in a simu-

lation environment. Chapter 8, visualization of arterial performance, provides means of visualiz-

ing and presenting performance measures to users and facility managers. Chapter 9, future re-

search, offers readers a few tasks that will be tackled in the future to increase the robustness of 

this method. Chapter 10, Implementation Plan, directs readers to requirements and challenges 

that will have to be addressed in order for proper implementation and the fulfillment of the goals 

that the system is intended to accomplish. Finally, Chapter 11, Closing Remarks, concludes this 

report by highlighting the objectives of this task and the manner in which they were accom-

plished and the anticipated impact to transportation in Georgia as well as possible impacts on the 

state of the practice.   
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2 LITERATURE REVIEW 

The following chapter provides a comprehensive review of previous efforts in estimating and 

predicting performance measures along signalized arterial streets.  A number of estimation mod-

els, along with their successes and contributions to the field of estimating performance measures 

will be presented. Models that have been developed to predict performances measures along ar-

terial will also be reviewed.   

2.1 Estimating Arterial Performance Measures 

Estimating performances measures along arterials is often more challenging than for freeways.  

The primary reason for this is that freeways are controlled access facilities with limited mainline 

traffic control (i.e. no signals, stop signs, etc.) while arterials are often uncontrolled (or limited 

control) access facilities.  That is, vehicles may turn on and off the facility at multiple locations, 

interaction with potentially numerous crossing arterials may be significant, and control devices 

(e.g. traffic signals) can significantly influence vehicle movements.  As a result of such interrup-

tions volume and speed are extremely varied.  Given the large variations in speed and volume 

along arterials, the ability to determine performance measures can be dependent on significant 

data needs and more advance mathematical techniques than those employed to extract perfor-

mance measures from freeways.   
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2.1.1 The Early Models 

In 1977 P.G. Gipps provided one of the earliest models for estimating performance measures 

along arterials. Gipps developed a regression model that employed occupancy measurements and 

vehicle arrival times, from loop detectors, to estimate arterial link travel times. The model was 

then validated using simulated data. Despite several model adjustments and the relative success 

of the model, Gipps noted that in order to improve the accuracy of his model, incorporating other 

parameters such as signal timing plans, number of lanes, and link length was needed. In building 

on the accomplishments of Gipps’ 1977 model, a number of researchers used his model as a 

foundation for their own model to improve the estimation of arterial performance measures. 

Gault and Taylor sought to improve Gipps’ 1977 model by calibrating it to a two lane roadway 

and eliminating a few of the parameters that they deem to have minimal impact on the relevant 

performances measures. [7–9]     

A review of a number of the earlier works, including the two previously mentioned mod-

els, was conducted by Sisiopiku and Pouphail [8]. The limitations presented ranged from the lack 

real-world validation results to use of assumptions that may prevent the respective model from 

being implemented in the real-world. Table 3 presents a number of early models and their asso-

ciated limitations and validations results [8].  
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Table 3 Limitation and Validation Results for the “Early” Models [8]   

 

 

Zhang and Kwon also presented an overview of a few of the earlier models that were 

used to estimate arterial performance measures.  In this report, the authors grouped the models 

being studied into five (5) categories.  These model categories are regression, dynamic input-

output, pattern matching, sandglass, and models developed by the Bureau of Public Roads 
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(BPR).  The following will sections will briefly highlight the characteristics of these categories 

as well as their limitation as it pertains to estimating performance measures along arterial. [10]   

2.1.1.1 Regression Travel Time Estimation Models 

Regression models attempt to use data that is currently available via today’s surveillance and 

control systems. These models are capable of accounting for the various different factors that 

may affect arterial travel time, however, the models often become location specific and difficult 

to transfer to other arterials. One of the main similarities among the different regression models 

is required input data. The input data needed for these may include time registered by a vehicle 

on a loop detector, occupancy (derived from a loop detectors), offsets, and other signal parame-

ters. Despite the applicability of these models, their estimation of travel times, when compared to 

those from the field, are often less than satisfactory and therefore in need of further improve-

ments.  [7], [9], [10] 

2.1.1.2 Dynamic Input-Output Link Travel Time Models 

Generally these models use input-output traffic flow relationships, measured at upstream and 

downstream detectors, along with assumptions describing the change in flow characteristics be-

tween the detectors. This class of models is able to estimate both link and route travel times us-

ing minimal site specific data.  However, a disadvantage of these models can be an inability to 

predict travel times (as opposed to estimating current travel times) and they require a greater data 
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sampling rate than what is currently available with the use of today surveillance equipment.  

[10], [11]    

2.1.1.3 Pattern Matching Models 

In pattern matching the upstream loop detectors record a sequence of voltage signatures from 

various vehicle types. This sequence of voltage signatures is then compared to those collected 

from a downstream loop detector.  The time between upstream and downstream matching se-

quences is the average travel time. This approach can also be used to estimate other performance 

measures such as traffic density and space mean speed. A challenge to pattern matching ap-

proaches is that they often require a data sampling rate and accuracy that is higher than that 

which is obtainable from today’s field detectors. [10], [12]  A more recent example of a technol-

ogy that has demonstrated success using pattern matching is the wireless traffic detection and 

integrated traffic data systems offered by Sensys Networks [13].  

2.1.1.4 Sandglass Link Travel Time Models 

These model use the concept that travel-time can be estimated as the sum of time spent on two 

segments of a link – a congested segment and an uncongested segment. On the congested seg-

ment of the link there is no inflow of vehicles from external sources nor is there outflow to other 

roads, thus travel times are essentially deterministic queuing delays. For the uncongested seg-

ment travel time is determined by using a constant speed relationship. One with a challenge of 

these models is that the required input is queue lengths which may only be indirectly obtained 
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from the field data. Therefore any error in estimating queue lengths from the loop detectors will 

be propagated throughout travel time estimation. Furthermore, the accuracy of these models is 

unsatisfactory especially for dynamic short-term traffic management applications.  [10], [14]    

2.1.1.5 Bureau of Public Roads (BPR) Models 

The models developed by the BPR to estimate performance measure along arterial have primari-

ly been used in transportation planning and intersection studies. Like sandglass models, travel-

times are computed as the sum of time spent on two segments in a link, the free-flow travel time 

and intersection delay. The input required for these models is traffic volume data which is ob-

tained directly from loop and video detectors. However, despite the anticipated accuracy of these 

model, when tested the result tended to be unsatisfactory. [10], [15]    

2.1.2 Developments in Estimation Models 

Building on the successes and lessons learned from earlier models, a number of recent efforts 

have been devoted to addressing the limitations and refocusing the assumptions of earlier mod-

els. One of the first significant attempts to build on earlier models was presented by H. M. Zhang 

in 1998. Zhang developed the Link-Journey-Speed (LJS) model which estimates the speed, and 

subsequently the travel time, along signalized arterials. The LJS model combines the speeds es-

timated from the roadway’s critical volume to capacity ratio and the one calculated from the vo-

lume and occupancy measurements from loop detectors. The model has been demonstrated to 

work well in under capacity conditions although may break down under congestion conditions - 
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particularly when the built up queues are not long enough to be detected by upstream detectors.  

[16] 

In 2007, Liu and Ma presented a time-dependent model to estimate travel time along arte-

rials. In this paper the authors developed a model that used loop detector and signal status data to 

calculate travel time along an arterial corridor. When calculating travel time the model decom-

poses travel time into two components; free flow travel time and intersection delay. Although the 

presented model estimates travel time along arterials fairly accurately its validation was com-

pleted in a simulated environment. Additionally, given that the model greatly relies on loop de-

tector and signal status data, a real-world implementation of this model may be met with a num-

ber of challenges relating to data accuracy and transmitting the data from the field to a remote 

location to be implemented in the model.  [17] 

Wang and Hobeika present a modified HCM2000 model to estimate travel time along ar-

terials. Similar to previous models, this model estimates travel times as a sum of free flow link 

travel time and delay experienced at an intersection. Essential to this model is the speed and vo-

lume data collected by upstream loop detectors. Based on these data free flow travel time is a 

simple calculation involving travel speed and link length while intersection delay is calculated by 

grouping vehicles together and using the relationship between average intersection delay and 

number of vehicles per cycle length as a well as average intersection delay and the delay of the 

first vehicle in a group of vehicles. The proposed model was validated using average intersection 

delay from a single intersection in the field and delay computed using the HCM 2000 method.  

Despite the accuracy with which this model estimates intersection delay for a single intersection 
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along an arterial, the authors acknowledge that extending the model to involve a number of inter-

sections will further demonstrate the feasibility of employing this model to estimate arterial tra-

vel time. Additionally, a potential limitation of this model is that it requires upstream loop detec-

tors, which are not often times available in the real-world.  [18]   

2.1.3 Automatic Vehicle Location and Identification Estimation Methods 

As technological advancements have been made in the fields of global position systems and var-

ious vehicle identification technologies, a number of researchers have employed the use of such 

technologies to better estimate transportation network performance measures, particularly travel 

time. Although the usage of these technologies has been largely geared toward freeway imple-

mentation there are a number of efforts that are aimed at extracting performance measures along 

arterial streets. Dailey and Cathey, in 2002 developed a estimation methodology that used transit 

vehicles that were equipped with advance vehicle location (AVL) technology, with the aid of 

Kalman filtering to estimate speeds and travel times along freeway and principal arterials [19]. 

Li and McDonald in 2002 presented a link travel time estimation model that used GPS data from 

a single probe vehicle. This model uses the time-speed profile of the probe vehicle to produce a 

maximum continuous acceleration and an average speed value to be inputted into fuzzy set.  

Once these values enter the sets they will be analyzed with historical traffic data to derive travel 

time along the link being studied. Despite the promising results from this research effort the 

model’s use of a single (or a few probe vehicles) to represent the traffic in its entirety along a 

particular arterial may provide erroneous data as a particular driver’s behavior may not be repre-
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sentative of the traffic’s current condition. Furthermore building fuzzy sets of driving patterns for 

a large arterial network may be a tedious and labor intensive process.  [20] 

Choi and Chung in 2003 presented an algorithm the fused data from GPS equipped ve-

hicles and loop detectors to estimate link travel times along arterials. This algorithm also em-

ployed the use of a voting technique, fuzzy regression, and Bayesian pooling to aid in the estima-

tion of arterial travel time. The base of this proposed algorithm is a double fusion data process 

while incorporating the historical traffic data of the link being studied to estimate link travel 

time. The results from the model indicate that this algorithm does accurately estimated the travel 

time for the arterial links understudy. However, possible limitations include lack of feasibility in, 

near-term, real-world implementation of the algorithm given its dependency on GPS and trans-

mitted loop detector data. Also the authors indicate that further tests need to be done to analyze 

how the algorithm will perform under different traffic conditions.  [21]   

In 2009 Pu et al. [22] presented key limitations associated with AVL technologies to es-

timate arterial performance measures in real-time. To address some of these limitations, the au-

thors developed a framework that employs historic bus and car speeds, and streaming AVL bus 

speeds to estimate bus and car speeds, and travel times in real-time. Central to this framework is 

the joint relationship between bus and car speeds which has been formulated through the use of 

historic car and bus speeds. Despite the method’s promising results, accurate estimates are de-

pendent on streaming AVL bus data which is not always available. Also, the authors highlighted 

the need for further studies, before full scale implementation, to evaluate the frameworks per-

formance under changing traffic conditions. [22]  
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Lucas et al. (2004) [23] presented three noteworthy limitations when using GPS and other 

forms of vehicle identification technologies. In part, these limitations are associated with the off-

site processing of vehicle identification data which hinders real-time implementation of such me-

thods, the cost associated with additional equipment and infrastructure investments, and privacy 

concerns of drivers as they traverse to transportation network. To address these limitations, the 

authors presented an estimation methodology that only relies on vehicle platoon information 

from loop detectors. Although promising a disadvantage of this method is that it requires stream-

ing detector data which is a limitation of today’s traffic controller. [23] 

All of the above efforts attempt to estimate performance measures in real-time. However, 

this goal has been achieved with varying levels of success and accompanied by different sets of 

limitations. Some of these works present an entire method to extract real-time performance 

measures, albeit with limited success during full scale field implementations. Others are more 

geared towards improving a particular component of a real-time performance estimation frame-

work and not necessarily developing a complete methodology.   

2.1.4 Statistical Models 

There is a large body of work of statistical estimation models that are aimed at approximating 

performance measures along arterials. In this category of models traffic data such as vehicle 

speed, occupancy, headway, traffic flow volume, etc., are used as input variables for equations or 

models that output performance measures such as travel time [17]. These models may be divided 

into sub-categories such as classical statistical models and more complex statistical models. 
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Classical statistical models refer to models that use traditional estimation techniques such as li-

near, non-linear, and Bayesian techniques to estimate arterial performance measures. The more 

complex model refers to model that employ techniques such fuzzy logic, neural networks, etc. or 

any combination of these techniques.   

In terms of examples of classical statistics models Turner et al. [24] presented a series of 

linear expressions to estimate speeds along arterials and subsequently travel time, Zhang [16] 

presented a non-linear model that combines two speed estimates to calculate arterial travel time 

and Park and Lee [25] used a simple Bayesian estimator as the basis of a model to estimate ar-

terial link travel speed.  As for more complicated models Park and Lee [25] paired a simple 

Bayesian estimator with an expanded neural network to estimate link travel speeds along arte-

rials, Cheu et al. [26] uses a multi-layer feed-forward neural network with back propagation 

training to fuse various data streams to estimate arterial speed, Palacharla and Nelson [27] em-

ployed the use of fuzzy logic and neural networks to dynamically estimate arterial travel time 

and Robinson and Polak [28] considered a k – Nearest Neighbor methodology to determine ar-

terial travel time using loop detector data.   

Some of the limiting factors of these models include that they can be site specific and 

must be recalibrated for different locations and a number of these have only been evaluated un-

der simulated conditions.  In addition many of the statistical models require large field data sets 

not only for the purposes of statistical significance but also for some of the learning algorithms to 

have more training before estimating arterial performance measures.  [17], [18]    
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2.1.5 Real-Time/Online Estimation Models  

Skabardonis and Geroliminis (2005 and modified 2008) proposed an analytical model to estimate 

travel times along arterial streets in real-time.  This model utilizes data that can be had from loop 

detectors such as, flow and occupancy, and pairs it with signal timing data such as, cycle length, 

green time, and offset.  Kinematic wave theory was then used as the base of this model as it was 

able to represent the spatial and temporal features on queues formed at signalized intersections. 

Similar to previous models the travel time on an arterial link is calculate as the sum of the link 

free flow travel time and the delay experienced at the intersection. In this model the delay in-

curred at an intersection is equal to the summation of the three forms of delay, the approach de-

lay, queue delay, and delay due to oversaturation. In light of this model’s ability to estimate tra-

vel time with relatively high accuracy it was validated in a simulated environment and also with 

limited field data. However, field data trials where offline, not utilizing a real-time data stream.  

[29], [30]    

Tsekeris and Skabardonis (2004) examined five analytical models that have been primari-

ly develop for use in real-time estimation of performance measures along arterials. These five 

models are the Spot Speed (SSM), BPR-Based, Uniform Delay-Based (UDM), Overflow Delay-

Based (ODM), and the Generalized Delay-Based (GDM) models. The evaluation of these mod-

els’ ability to estimate performance measures in real-time was conducted in a simulated envi-

ronment. In their simulated environment they found that to fully evaluate the robustness and ac-

curacy of these methods, aggregated travel times, at the network level, and available signal tim-

ing information should be taken into consideration. In general, the GDM and ODM were the 
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most promising approaches to estimate total average travel times at the network level. While the 

other models provided better estimates of individual link travel times.  The GDM and ODM were 

also capable of improved network-wide travel time estimates and greater output robustness when 

there are discrepancies between field and simulated signal timings. However, it is not known 

how these simulated findings would translate to a field implementation.  [31] 

In 2009 Kwong et al. [32] presented a scheme for estimating the distribution of travel 

time on an arterial link. This scheme employed the use of wireless sensors to acquire the magnet-

ic signature of each vehicle. An upstream signature is matched anonymously with the signature 

from a downstream sensor to estimate the travel time of a particular vehicle. The authors also 

state that other performance measures such as link volume, delay, and queue length can be de-

termined from this methodology as distributions. The means of extracting performance measures 

from a vehicle’s upstream and downstream magnetic signature is a statistical model of signature 

distance that requires no additional detector data, such occupancy, or infrastructure data such as 

signal timing plans.  In light of the preliminary success of this model, there is a need for further 

field evaluations as the current evaluation procedure was done on a simple network.  In addition, 

ground truth verification of determined performance metrics is needed.  [32]   

Lucas, Mirchandani and Verma in 2004, [23], presented a methodology to extract travel 

arterial time information without the need to indentify individual vehicles. Their methodology 

identified vehicle platoons as they traversed the transportation network. The platoons are identi-

fied with the use of loop detectors placed along the arterial corridor being studied.  The results 

presented by the authors are encouraging however based on testing in a simulation environment 
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only. As previously mentioned, Zhang and Kwon [10] highlights that such techniques often en-

counter difficulties when trying to estimate performance measures in real-time as the sampling 

rate needed for platoon matching is often not available in the field.   

A preliminary study was untaken in Melbourne, Australia to investigate the feasibility of 

extracting arterial travel time measures in real-time. The study was conducted along a small sig-

nalized arterial corridor controlled by SCATS (Sydney Coordinated Adaptive Traffic System).  

In this approach, SCATS datasets, aggregated in 60 second bins, were used in conjunction with 

historical travel time data from VicRoads to provide estimates of real-time travel time. A draw-

back of this approach is that to obtain estimated travel time data the given signal system 

(SCATS) must also be used. In addition additional detectors for successful field implementation 

may be required.  [33] 

A large scale attempt to extract arterial performance measures in real-time was presented 

by Whale [34]. In this paper, the authors presented a methodology that employed the use of a 

cellular automaton microscopic traffic simulation software and approximately 750 inductive loop 

detectors located throughout the study area, Duisburg, Germany, to estimate roadway perfor-

mance. In essence, this methodology acquires traffic information, namely vehicle counts, from 

each of the approximately 750 detectors at a resolution of 60 seconds. The data used as input to 

the cellular automaton traffic simulation model. Upon receiving the data and performing the ne-

cessary data processes, the load on each link is then presented to the consumers of this informa-

tion. Limitations of the approach include the use of a cellular automaton traffic model which has 

a few deficiencies in representing traffic and driver behavior on a microscopic scale, a lack of 
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flexibility in the resolution at which traffic data is sent and process, and that the vehicle load 

along a particular link is the only performance measure being delivered to the consumers of the 

results this effort.  [34] 

In another effort a team of researchers from the University of Minnesota developed the 

SMART-SIGNAL system (Systematic Monitoring of Arterial Road Traffic and Signals). This 

system is a data collection and performance estimation tool for arterial streets. Integral to the 

functionality of this system is the collection of high-resolution event based traffic data from an 

arterial. The primary data sources for the system are signal controller cabinets that are located 

throughout the arterial being studied. From these cabinets event based data such as vehicle actua-

tions and signal phase changes are collected, archived, and processed. This rich dataset is then 

archived and processed to determine a variety of performance measures. Estimates of perfor-

mance measures include travel time, queue length, and number of stops, under a variety of condi-

tions.  The field implantation of this system indicates that it is capable of producing accurate per-

formance estimates in real-time. One challenge of this approach is the requirement to gain access 

to a signal cabinet to extract the event-based signal data.  In addition, this system is more feasible 

for a corridor which is controlled by a network of controllers with one being a master. Where a 

master cabinet is not present real-time data acquisition becomes a more significant challenge par-

ticularly given the resolution required by this methodology.  [35] 

From the above sections one realizes that a number of advancements have been made in 

the field of performance measure estimation along arterials although significant limitations still 

exist. It is also noted that while many of these above efforts discussed their finding and underly-
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ing algorithms they did not present significant information regarding data transmission methods 

or requirements, the impact of lost data or erroneous detections, required detector data filters, or 

other implementation issues. Despite the successes of the state-of-the-art methodologies and sys-

tems, there are few limitations that this research effort is looking to address while building on the 

capabilities of these earlier works.   

2.1.6 Available Real-Time Traffic Information Services 

Currently, there are number of providers that offer traffic information in real-time. A few of the 

major participants in this arena include Google [4], Traffic.Com (NAVTEQ) [5], INRIX [36], 

Total Traffic Network (TTN) of Clear Channel Radio [37], and SpeedInfo [38].  Although this 

short list highlights individual organizations that are currently providing information regarding 

traffic performance, it is noted that a number of these and similar organization offer these servic-

es in collaboration with similar organizations.  

The primary means by which these service providers obtain data to estimate real-time 

traffic performance measures is through infield sensors and GPS enabled devices.  For instance, 

Google relies on individuals that have their GPS based, mobile Google Maps smart phone appli-

cation enabled. Google aggregates these individuals’ data to estimate the current state of traffic, 

primarily on arterial streets [4]. As for freeway data, Google as well as other traffic service pro-

viders also rely on point sensor data often provided by regional and local transportation agencies, 

such as departments of transportation. Traffic.com, an affiliate of NAVTEQ, acquires its data 

from its own network of digital traffic sensors, commercial and government partners, and their 
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own traffic operations centers [5].  SpeedInfo uses its solar powered, DVSS-100 Doppler radar 

Speed Sensor system which measures the speed of vehicles on both sides of the highway [38].  In 

addition to some of the previously mentioned data sources INRIX gathers information from GPS 

enabled commercial vehicle fleets to estimate traffic performance [36]. TTN employs informa-

tion from Airborne/Mobile Spotter Vehicles, Digital Scanners that cover many local emergency 

services, Police Callouts, and Traffic “Tip Lines” [37].   

Accuracy of the traffic information being offered by these service providers is highly de-

pendent of the facility type and acceptable confidence band for the particular consumer’s appli-

cation. The freeway performance accuracy is commonly higher than that for surface streets.  This 

is primarily due to limited access nature of freeways and more uninterrupted flow characteristics. 

These attributes of a freeway facility lends itself to accurate performance measures being ex-

tracted, particularly on the macroscopic scale, with a fairly narrow confidence band.  As for sur-

face streets, both vehicle speeds and volume are highly variable due to intersections (signalized 

and unsignalized) and frequent, uncontrolled access points. In addition, to date, only macroscop-

ic level information is available for both freeway and arterial facilities, representing roadway  

segments instead of individual vehicle performance.  
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3 PROPOSED METHODOLOGY 

The methodology employed by the research team utilizes point sensor traffic data to drive a mi-

croscopic traffic simulation in real-time. The data from the detectors was transmitted and used as 

input to a simulation model of the area being studied. Arterial performance measures are then 

estimated from the real time simulation. In describing the methodology this section first presents 

the conceptual framework for the effort followed by the current implementation status. In the 

current research effort the microscopic simulation package VISSIM is utilized.   

3.1 Conceptual Framework 

Figure 2 illustrates the conceptual framework for developing a real-time, online, data-driven si-

mulation tool. The first step in the process is to obtain real-time traffic related data from the net-

work’s roadway detectors. These data are then processed by the data processing server. Next, the 

current traffic state is estimated by streaming the processed detector data into a calibrated simu-

lation model of the area being studied. Once the traffic’s current state is captured in the simu-

lated environment, the model may be used to predict near-term future traffic conditions. For ex-

ample, instances of the traffic’s current state may be generated and run faster than real-time to 

provide a series of possible future traffic states. From these future states, a probable future state 

may then estimated. The current research effort focuses on the use of real-time data to estimate 

the current traffic state however future research efforts will seek to extend the current estimation 

platform for use in near-term traffic prediction.  
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Figure 2 Conceptual Framework for Proposed Methodology 

3.1.1 The Network and Detectors 

As stated, the goal of this project is to deliver arterial performance measures in real-time using 

an online data driven microscopic traffic simulation. This research assumes an arterial network 

where point sensor (i.e. loop detectors, video detection, etc.) detection equipment is available, or 

may be deployed, capable of transmitting detection data in real-time. It is noted that while real 

time transmission capabilities are not commonly utilized such technology exists and is being in-

creasingly adapted. It is further assumed that the detector location is known and may be mapped 

to the simulation environment. Minimum required data streamed from the detector include indi-

vidual vehicle actuations and speed. Other traffic related data such as occupancy, headway, and 

volume may also be available however is not required for the current research effort.     
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3.1.2 Data Processing and Communication 

The communication infrastructure to implement the real time simulation has three primary tasks: 

1) manage the transmission of traffic data between the point sensors and the data processing unit, 

2) facilitate the communication between the data processing unit and the simulation, and 3) 

broadcast the current and most probable future traffic states.  

For the current implementation in the first task the data that is sent from the point sensors 

is processed by a central data processing unit to facilitate implementation of the data into the si-

mulated environment. The data processing unit reads the data from the detector technology and 

converts this data into the appropriate message format for transmission to the simulation model. 

The second task facilitates the passing of information between the processing unit and the 

traffic simulation. Given the specific requirements for data transmission, processing, and sharing 

with simulation instance(s), a customized communication tool is employed.  This tool is referred 

to as the Transportation Runtime Infrastructure (TRTI). TRTI is a High Level Architecture 

(HLA) inspired communication framework that manages the passing of information between 

clients (i.e. simulations, data processing unit, etc.). Section 4 and Appendix A provide detailed 

TRTI development, functionality, implementation information.  

The third task broadcasts the current and estimate future states for use in traveler infor-

mation systems or in traffic control optimization. A web-based application for presenting the in-

formation has been developed. For transportation facility managers, it is also envisioned that in 

addition to the web-based application they will have access to the raw data. This will allow for 
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the use of model outputs in systems capable of adjusting traffic system parameters in real time, 

such as signal timings, allowing for increased traffic control system responsive. 

3.1.3 The Simulated Environment 

VISSIM, distributed by PTV, is a high resolution simulation program that is capable of modeling 

multi-modal traffic flow. VISSIM also has the capability to visually represent traffic. VISSIM 

also provides a COM (Component Object Model) interface which allows VISSIM to be auto-

mated by other applications.  The COM interface also provides users access to VISSIM objects, 

so that they may be created, manipulated, or deleted.  For additional information regarding VIS-

SIM and it VISSIM COM interface see [39] and [40].   

It is noted that one of the most critical aspects of this research project is the need to have 

a well calibrated simulation model of the area being studied. Section 6 documents the calibration 

effort undertaken as part of this research. Current calibration efforts are focused on a priori cali-

bration of the model parameters (i.e. vehicle acceleration, look ahead, safety distance, etc.). Fu-

ture research will explore real-time calibration of VISSIM model parameters.  However, a well 

calibrated base model will remain critical as it is anticipated that the real-time calibration provi-

sions will work best where only small adjustments to VISSIM parameters are required. 

3.1.4 Test Bed 

Video cameras were selected as the point sensors to be used for this test bed developed as part of 

this research project.  Ten video cameras have been installed in a test bed located next to the 
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Georgia Institute of Technology campus. A Video Detection System (VDS) was selected as the 

accompanying hardware and software, facilitated the real-time transmission of event-based traf-

fic data to a remote location.  In addition the video detection system is capable of extracting a 

significant portion of available roadway data.  Currently, the ten cameras that have been installed 

transmit their video via fiber optic cable to the data processing unit. This unit then processes the 

videos and sends all the relevant traffic data via wired or wireless connection to a client personal 

computer. This client then parses the data stream and inputs it accordingly into a VISSIM model 

of Georgia Tech’s campus. Figure 3 presents the test bed’s location, camera positions and their 

respective views.   
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Figure 3 Test Bed Location and Camera Layout and Coverage [4] 

3.2 Summary 

In the following chapters the above conceptual framework will be expand.  First the 

TRTI will be presented in detail. This will be followed by a series of method implementations, 

ranging from lab implementations to full field tests. These implementation presentations will 

then be followed by discussion on related research items explored as part of this effort including 

calibrations and the treatment of pedestrians in a real time vehicle based simulation model. 
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4 TRANSPORTATION RUN-TIME INFRASTRUCTURE 

As discussed the real time simulation requires a communication infrastructure to facilitate the 

passing of information between the central processing unit and the traffic simulation.  Given the 

specific requirements for data transmission, processing, and sharing with simulation instance(s), 

the use a customized communication tool is employed.  This tool is referred to as the Transporta-

tion Runtime Infrastructure (TRTI).   

The development of the TRTI has been conducted jointly between this project and an 

NSF’s Division of Emerging Frontiers in Research and Innovation (EFRI) project. TRTI is a 

High Level Architecture (HLA) inspired communication framework that manages the passing of 

information between simulation instances, referred to as federates.  TRTI is an application pro-

gramming interface (API) or middleware that operates using a publish/subscribe model.  This 

mode of operation allows clients and groups (federates) to publish data to other federate(s) and 

receive data from federate(s) that they have subscribed to.  Note, one of these federates can act as 

a server (i.e. the central data processing unit) that orchestrates the sharing of information among 

the other federates.  The TRTI allows users to manage, create, add or delete simulations whenev-

er there is a need to do so.  Thus, for example, a single data processing unit could serve multiple 

simulations, each modeling a different arterial.  The reminder of this chapter provided details in-

to the background, development, and use of the TRTI.  
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4.1 Related Run-Time Infrastructure Work 

Simulation experts and researchers around the world have developed several Run-Time Infra-

structure (RTI) frameworks for varying purposes.  Many of these frameworks have incorporated 

features and functions defined by the US Department of Defense’s High Level Architecture 

(HLA) specification, resulting in interoperability between them.  Georgia Tech researchers have 

developed toolkits to address a wide range of requirements common to distributed simulations.  

For example, the Federated Simulations Development Kit (FDK) is a framework designed to fa-

cilitate the development of an RTI, especially in the context of distributed simulations.  The FDK 

contains two fully functional RTI implementations: the Basic RTI (B-RTI) and the Detailed RTI 

(D-RTI).  The B-RTI provides only the minimum services necessary for time-managed and mes-

sage-passing simulations.  In contrast, the D-RTI provides the entire spectrum of services de-

tailed in the HLA specification [41].   

With advances in sensor technology and the increasing ubiquity of wireless communica-

tions, simulations that incorporate real-time data (often referred to as "symbiotic" simulation sys-

tems) have been receiving increased attention.  Frederica Darema categorized these simulations 

as Dynamic Data Driven Application Systems (DDDAS) and has described issues related to their 

development [42].  Considerable research and development has been devoted to the creation of 

such systems, yielding several application examples.  The LEAD project is applying these prin-

ciples to weather prediction [43].  Other work is being conducted to accurately model and predict 

wildfire behaviors [44].  The AMBROSia project provides a generic toolkit for collecting, ana-

lyzing, and validating data from sensors in scientific experiments [45].  Researchers at the Uni-
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versity of Birmingham (UK) have been exploring the potential role of artificial intelligence (AI) 

agents within a DDDAS [46].  The COERCE effort is researching ways to design increasingly 

flexible DDDASs that dynamically adapt to conditions outside the scope of a simulation's origi-

nal design [47].  Additionally, the Agency for Science, Technology and Research in Singapore 

(A*STAR) has been exploring the use of DDDASs to build Integrated Manufacturing and Ser-

vice Systems (IMSS) that integrate and streamline several of the business processes of the manu-

facturing sector [48]. 

Research is also being performed in the context of traffic modeling and simulation.  For 

example, Sisiopiku et. al provide a review of the use of sensor-driven simulations to optimize 

signal timings and individual vehicle routings [8].  Yet another specific project involves accu-

rately predicting travel times on arterial roads by using loop detectors in a symbiotic simulation 

[10]. 

Leveraging the work done by others and recognizing that the proposed methodology re-

quires a robust communications framework; the research team developed the Transportation 

Run-Time Infrastructure (TRTI).   

4.2  TRTI: Overview 

Inspired by the HLA specification, the TRTI is a middleware communication framework based 

upon the designs of the B-RTI mentioned in Section 4.1, but modified for traffic applications.  It 

provides mechanisms for group-oriented message passing using the publication-subscription pa-

radigm.  Because of the dynamic nature of a transportation system, the TRTI was designed to 
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allow individual nodes (which are referred to as “federates” in HLA literature) to communicate 

over any available network with other federates in the system.  (The total collection of nodes 

within a system is referred to as a “federation”.)  To ensure its versatility, the TRTI remains ag-

nostic toward the underlying network medium so long as it is IP-based.  As a result, the TRTI 

may operate across a variety of network media, including Ethernet, Wi-Fi, 3G, 4G, and several 

others.  In addition, the TRTI supports both the UDP and TCP protocols, thereby allowing fede-

rates to tailor individual connections to their current network conditions.   

In relation to the methodology being developed, the TRTI provides a communication in-

terface for a wide variety of federates.  For example, traffic cameras, vehicle counters, vehicle-

based simulators, and traffic management center simulations are classified as federates that con-

tribute to the simulation.  The TRTI allows the data from all of these federate types to communi-

cate seamlessly in spite of their differing roles and network media. 

Rather than sending messages to multiple federates, the TRTI offers the ability to arrange 

federates into groups.  Groups are purely logical constructs that provide mechanisms for segre-

gating messages.  When a group is created, it is given a unique name that distinguishes it from 

other groups within a federation.  When a federate wishes to subscribe to a group, the TRTI uses 

the target group’s name to identify the correct group and establish a subscription.  Messages pub-

lished to a group are automatically propagated to all members of that group.  The TRTI frees fe-

derates from having to maintain an ever-changing list of message recipients, from having to 

transmit several copies of each message, and from managing connections to each of the other 

intended recipients. 



 

52 

 

Because the TRTI is designed to operate in the absence of any infrastructure, federates 

are entirely responsible for group management.  To facilitate this, the TRTI provides federates 

with mechanisms to create, subscribe to, and withdraw from groups.  Any federate can create a 

group irrespective of its role within a federation.  Federates can also join and leave groups arbi-

trarily, as well as send messages to and receive messages from a group.  When a federate pub-

lishes a message to a group, the TRTI ensures that the message is propagated to all other fede-

rates that have subscribed to the group, and prevents it from being sent to nonsubscribers.  Such 

segregation ensures that each federate receives only messages in which it is interested.  As a re-

sult, the need to broadcast each message to the entire federation is eliminated, thereby reducing 

its overall bandwidth consumption. 

4.3 TRTI Architecture: A Closer Look 

4.3.1 Initialization 

Within a federation, each federate utilizes a local instance of the TRTI as its communica-

tions gateway.  The TRTI serves as a middleware between federates and handles all aspects of 

message reception and delivery.  At initialization, the TRTI provisions the necessary resources to 

enable message passing via both the UDP and TCP protocols.  The TRTI also records the name 

of a message handler function that will be called when the TRTI receives a message intended for 

the federate.  Each instance of the TRTI is identical, regardless of the role of the federate within 

the simulation.  As a result, all federates have access to all features of the TRTI.  Figure 4 pro-

vides an overview of the TRTI's architecture. 
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Figure 4 TRTI Architecture Overview 

 

Each federate will initialize its local instance of the TRTI at the beginning of its participation in 

the simulation.  In the online traffic simulation system described in Section 3, the cameras, road-

side sensors, and traffic management center simulations initialize their instances of the TRTI 

immediately after being brought online.   

4.3.2 Messages 

Messages passed by the TRTI conform to a standardized format.  When a federate publishes a 

message, the TRTI attaches a header to the beginning of the message containing its size and type, 

the name of the group to which the message is to be published, and the IP address of the mes-

sage’s source.  The message is then delivered to the federate that serves as the host of the in-

tended group which subsequently propagates the message to group subscribers.  The TRTI oper-
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ates under the assumption that no messages are lost in transit and therefore does not employ any 

delivery confirmation mechanisms.  The process of message propagation is detailed in Section 

4.3.6. 

As an example, the cameras of the test bed system broadcast messages that typically con-

tain the following information: 

4, 2, 18, 13:00:45, 1278608487.375490 

These fields represent the following (from left to right): 

•Detector number - ID of the source camera for this message 
•Lane Number - lane which the camera is monitoring 
•Vehicle speed - measured in miles per hour 
•Timestamp - formatted as hh:mm:ss 
•Epoch timestamp - number of seconds from 12:00:00AM 1/1/1970 

 

Given the fact that current efforts are limited to a small geographical area, only one group is spe-

cified.  As a result, all of the simulators in the system all receive the same messages. 

However, not all of the messages sent by the TRTI are utilized by federates.  Because 

disparate TRTI instances require a collaborative means of managing groups, the TRTI employs 

group management messages separate from federate-generated group messages.  When a fede-

rate creates a group, its local TRTI instance builds a group management message that details the 

new group and delivers it to the intended group host.  The group host's local TRTI instance then 

processes the message internally and performs the actions described in Section 4.3.6.  Requests 

for group subscriptions and subscription terminations also result in group management messages 

that are handled in a similar fashion.  However, when a federate requests that a message be pub-

lished to a group, the TRTI creates a group message and delivers it to the appropriate recipients.  
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When a group message is received, the local TRTI instance delivers the message's data to the 

federate by calling the message handler function (described in Section 4.3.3). 

4.3.3 Handlers 

The TRTI employs two types of handler functions.  First, message handler functions serve as a 

federate's inbox for messages from the TRTI.  As group messages are received, the TRTI passes 

the contents of the incoming message to the federate's message handler.  Similarly, the TRTI 

employs internal message handlers for processing incoming group management messages.  

These handlers operate independently and asynchronously from the federate's software, thereby 

freeing the federate from any group management and message propagation tasks.  While these 

internal handlers are defined within the TRTI framework, the federate's incoming message hand-

ler function is defined entirely by the federate.  Only one incoming message handler function can 

be defined for each instance of the TRTI.  The incoming message handler must be defined when 

the TRTI is initialized. 

Second, the TRTI allows for group handlers to be defined by federates.  Group handlers 

are used to perform processing tasks on messages prior to their delivery to each of the intended 

recipients.  Group handlers also allow for common processing tasks to be consolidated, thereby 

eliminating duplicative effort by the individual federates.  They also allow for group-level infor-

mation to be reported to group members.  For example, a transportation simulation may imple-

ment a group handler that determines the number of vehicles subscribed to the current group and 
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appends it to each message, thereby providing a rough estimate of how many vehicles are in the 

area.   

Unlike message handlers, there is no limit to the number of group handlers that can be as-

sociated with a group.  Group handlers are executed by group hosts and can be associated with or 

disassociated from a group at any time.  When a federate publishes a message, its local TRTI in-

stance transmits the message to the group's host.  The host TRTI instance then executes the 

group handlers associated with the group and propagates the processed message to the group 

subscribers.  Group handlers are executed independently and asynchronously from the federate's 

software. 

4.3.4 Connections 

As mentioned in Section 4.2, the TRTI supports message passing via both TCP and UDP proto-

cols.  Federates can use unreliable datagram services in areas where weak signal strengths disal-

low reliable connections, and use persistent connections where strong signals prevail.  This flex-

ibility maximizes a federate’s ability to remain connected with a federation in spite of changing 

network conditions.   

When a federate subscribes to a group, it designates which protocol is to be used when 

transferring messages both to and from the group.  If a federate specifies a persistent TCP con-

nection, the TRTI takes responsibility for maintaining the connection.  In transportation simula-

tions, connections often become disrupted when vehicles drive through “dead zones” in wireless 

network coverage.  When this occurs, the TRTI reestablishes any persistent connections as soon 
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as the vehicle returns to an area with adequate signal coverage.  However, if a federate specifies 

that the UDP protocol is to be used, no such connection maintenance procedures are required due 

to the connectionless nature of UDP. 

4.3.5 Message Queues 

The TRTI handles the delivery and receipt of messages asynchronously from the federate’s soft-

ware.  To facilitate this, the TRTI employs a series of queues to store messages until the federate 

is prepared to accept them.  For example, when messages are received, the federate’s local TRTI 

instance stores them in the incoming message queue until the federate calls for them to be 

processed.  The messages are then passed to the federate in the order they were received.  In the 

context of transportation simulation, this queue enables the federate to control when new data is 

incorporated into the simulation. 

When handling outgoing messages, the TRTI can be configured in one of two ways.  By 

default, it is configured to deliver messages immediately.  In this case, when the federate passes 

the message to its local TRTI instance, it immediately begins publishing it.  An alternate confi-

guration allows outgoing messages to be stored in a queue.  The messages remain queued until 

the federate explicitly requests that they be delivered.  At this point, the TRTI publishes all 

queued messages in the same order that the federate provided them.  In both configuration scena-

rios, the TRTI publishes messages asynchronously from the federate’s software. 
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4.3.6 Groups 

Any federate within a federation can create and join a group. When a federate creates a group, it 

specifies a group name and the address of the federate that will host the group.  Each group 

host’s TRTI instance will maintain a list of all federates that are currently subscribed to the group 

and ensure that each published message is propagated to all group subscribers.  When federates 

subscribe to a group, they must specify both the target group name and the address of the group 

host.  Once subscribed, the federates will receive all messages from the group and may broadcast 

messages to all other members of the group. 

Naming conventions for groups can be based on a variety of criteria.  Examples include 

generating names based on a federate’s geographic location, its role within the federation, the 

type of messages being sent, or numerous other factors.  Group naming is completely arbitrary 

from the TRTI’s perspective and is left entirely to the federates to determine.  In a transportation 

simulation system, possible naming conventions include using street address ranges, sensor-

specific names, and/or latitude-longitude coordinates.   

Group creation involves three steps illustrated in Figure 5.  First, a federate sends a group 

creation message that includes the new group's name to the intended group host.  (Any federate 

can send and/or receive these messages to any other federate.  They can even send these requests 

to themselves if they intend to host the new groups.)  Upon receipt, the message is placed in the 

group host's incoming message queue (described in Section 4.3.5).  Second, the group creation 

request is relayed to the group host's group creation message handler (described in Section 
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4.3.3).  Third, the group host creates an entry in its global groups list for the new group.  (The 

global groups list contains a list of all groups for which this federate serves as the group host.)   

 

 

Figure 5 Steps taken by TRTI when groups are created 

When a federate subscribes to a group, the TRTI instances of both the group subscriber and 

group host take several steps as illustrated in Figure 5.  First, the subscriber's TRTI instance adds 

an entry to its locally-registered groups list to indicate that it has joined the target group.  

Second, the subscriber opens a connection to the group host and stores it in its connections list 

(described in Section 4.3.4) for later use.  If the subscriber is not using a persistent connection or 

had already stored an open connection to the group host previously, this step is skipped.  The 

third step only occurs if the subscriber's TRTI instance is configured to use an outgoing message 

queue (described in section 4.3.5).  In this case, the subscriber creates a group subscription mes-

sage and adds it to the outgoing message queue.  Next, the message is transmitted to the group 
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host and placed in its incoming message queue.  (If the target group does not yet exist on the in-

tended host, the group host creates the group by performing the steps shown in Figure 5.)  Fifth, 

the group subscription request is relayed to the group host's group subscription handler (also de-

scribed in section 4.3.3).  Finally, the handler modifies the target group's entry in its global 

groups list to reflect the new subscription.   

 

 

 

Figure 6 Steps taken by TRTI when federates subscribe to groups 

After a group has been formed and federates have joined, the subscribers can begin publishing 

messages to the group as shown in Figure 7.  First, a federate generates a message and passes it 

to its local TRTI instance for publication to a target group.  The TRTI finds the target group in its 

locally-registered group list and transmits the message to the group's host.  Upon receipt, the 

group host's TRTI places the message in its incoming message queue.  Second, if any group 

message handlers (described in Section 4.3.3) have been associated with the target group, the 
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group host's TRTI relays the message to them for processing.  Third, the group host generates a 

copy of the processed message for each of the group's subscribers as indicated by the host's glob-

al groups list.  Fourth, if the host's TRTI is configured to use an outgoing message queue, copies 

of the processed message are then placed in the queue.  Fifth, the copies are transmitted to all 

group subscribers and subsequently placed on their incoming messages queues.  (If the message's 

source is a subscriber, it will also receive a copy of the message.)  Finally, each subscriber's 

TRTI instance relays the message to the federate's incoming message handler that was designat-

ed during the TRTI's initialization (as mentioned in Section 4.3.1). 

 

Figure 7 Steps taken by TRTI when group messages are published 

The steps required for leaving a group are similar to the subscription process shown in Figure 6.  

First, the departing federate removes the group's entry from its locally-registered groups list.  

Second, the federate generates a group removal message and, if configured to do so, places the 

message in its outgoing message queue.  Third, the message is transmitted to the group host and 

subsequently added to its incoming message queue.  Next, the group host relays the request to its 
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subscription termination message handler.  Fifth, the handler modifies the group's entry in its 

global groups list to reflect that the departing federate has terminated its subscription.  Finally, if 

the departing federate was using a persistent connection and has terminated its subscriptions to 

all of this host's groups, the group host closes the federates connection.  The departing federate 

subsequently disposes of the corresponding entry in its connections list. 

4.3.7 Miscellaneous 

The TRTI is written in the C programming language and has been optimized to minimize the 

overhead of message propagation.  While many elements of the TRTI are conceptually inspired 

by the HLA, its design deviates significantly from the original specification in order to compen-

sate for the highly dynamic nature of transportation systems.   

Some of the commercially-available traffic simulation platforms on the market today, 

such as VISSIM, provide developers with a Visual Basic (VB) interface for expanding the plat-

form’s functionality.  To accommodate this, the TRTI has been compiled as a dynamically linked 

library (DLL) to maximize compatibility with VB and other languages with DLL support.  For 

additional details on how to initialize and use TRTI functions, Appendix B provides the Applica-

tion Programming Interface (API) for TRTI. 

4.3.8 Limitations of the TRTI 

Because it was not designed as a peer-to-peer framework, the TRTI’s architecture is its most sig-

nificant limitation.  Specifically, no mechanism exists for federates to "explore" a network, the-
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reby preventing them from finding one another without using some form of directory lookup ser-

vice.  Section 4.3.6 illustrates this limitation by explaining that federates must provide the IP ad-

dress of group hosts, implying that the address is already known.  Such is the case for the method 

being proposed.  To compensate, a single statically-addressed federate (whose address was hard-

coded into each federate's software) was designated as the host of all groups.  However, in cases 

where the address of group hosts is not previously known, a directory service must be used to 

provide federates with the IP address of each group’s host. 

Another related limitation stems from the requirement that groups be hosted by a specific 

federate.  When a group host goes offline, the group is dissolved.  Any messages published to 

that group in the future will no longer be propagated.  For the group to be restored, it must be 

recreated on a new host, and each federate must subscribe to the new group. 

Several minor TRTI limitations are dictated by the computing hardware.  For example, 

the maximum number of queued messages, groups, and group members is determined by the 

amount of memory available on the host machine.  (The TRTI can be configured to enforce arbi-

trary maximums on the size of these structures.)  Also, message propagation speed is limited by 

both processor speed and network bandwidth.  Groups with large numbers of subscribers may 

experience significant latency in message delivery times due to these factors. 

Another issue arises from the wide variety of hardware used in distributed simulations.  

Not all hardware manufacturers construct their products to use the same endian format.  Because 

of the TRTI's agnostic approach toward message payloads, it does not modify any numerical data 

in the message and thereby does not ensure compatibility between federates of different endian-
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ness.  As a result, federates may receive messages that appear corrupt.  To avoid this, federates 

should implement standards for bit ordering within their federations.  A simple solution involves 

utilizing the functions provided by the standard sockets library to encode numerical values both 

to and from network bit order.  If messages are properly encoded before being sent to and after 

being received from the TRTI, bit ordering problems will be averted. 
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5 EXPERIMENTATION AND EVALUATION 

Three experiments were conducted to determine the feasibility of the proposed methodology. 

The first of was a proof of concept test which was conducted in a simulated environment. The 

second and third were field tests, with the primary difference being the use of temporary versus 

permanent detectors. The following presents the details and results for each experiment.   

5.1 Experiment #1: Simulated Environment - Proof of Concept 

The proof of concept seeks to provide insight into the feasibility of the proposed real time simu-

lation framework. This experiment uses two VISSIM simulation instances. One instance 

represents the “real-world” or field and the other attempts to replicate the “real-world” simula-

tion in real-time (referred to as the “modeled-world”). The inputs to the real-world model include 

traffic volumes over a 4-hour period (reflective of a peak period), signal timing data, and vehicle 

turning movements. The modeled-world simulation has the same roadway configuration, signal 

timing data, and historical turning movement percentages. The modeled-world simulation is not 

given any vehicular volumes as part of the input files. Instead, as will be discussed, vehicles are 

generated according to the data obtained from the detectors in the real-world simulation instance. 

This initial experiment explores the feasibility of approximating traffic conditions of the real-

world simulation in the modeled-world simulation. To determine how well the modeled-world 

replicates the real-world travel time and delay over representative paths, and queue lengths at the 

approaches of the various intersections, are collected and compared.   
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5.1.1 Experimental Design 

A three intersection arterial was created using VISSIM, with each intersection under two-phase 

semi-actuated signal control. Each roadway is a two-way arterial, with one lane in each direction. 

In the real-world simulation a loop detector is placed 100 feet from the upstream end of each en-

trance link, for a total of eight boundary loop detectors. These detectors are responsible for cap-

turing the presence and speed of a vehicle as it enters the network. In both the real-world and 

modeled-world there are 6 additional detectors, one on each intersection cross street approach.  

These detectors are used to implement semi-actuated traffic signal control. No data is currently 

passed from these detectors in the real-world simulation to the modeled-world simulation. Both 

models simulate a 4 hour time period during which the maximum network volume reached is 

approximately 1200 vehicles/hour and a minimum of approximately 550 vehicles/hour.  

A framework in C++ was developed to implement the system shown in  

Figure 8. In this framework VISSIM COM is utilized to provide a direct means of interacting 

with a simulation during runtime. To establish communication between the two simulation mod-

els a unidirectional named pipe is created. A pipe is a specific section of memory that is used for 

the purposes of communicating between a server and one or more clients. When using pipes the 

pipe-server is the process that creates the pipe and the pipe-client is the process that connects to 

the created pipe [49]. In the named pipe that was created the real-world simulation model served 

as pipe-server and was able to write to the pipe. The pipe-client was the modeled-world simula-

tion and was able to read from the pipe. While pipes are capable of two-way communication for 
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the purposes of this experiment a unidirectional pipe was sufficient. Subsequent experiments re-

place pipes with the TRTI. 

 Each of the eight detectors that are placed at the edge of the real-world simulation net-

work are polled for vehicle speed, location, and lane data once every simulation second. In this 

example, given the fixed detector locations, a detector ID would be sufficient in place of the lo-

cation and lane data, however, passing location and lane data was undertaken to allow for more 

robust data streams in future experimental iterations. At the end of each second the pipe server 

writes an [8] x [3] array to the pipe containing the detector information over the last second. The 

array is then read by the pipe-client and the information is implemented in the modeled-world 

simulation. For a graphical representation of the experimental design, see Figure 8 Experimental 

Design for Proof of Concept. 

 

 

 

Figure 8 Experimental Design for Proof of Concept 
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 The execution of the model world is driven by the real-world model, with the modeled-

world executing a simulation second only when a second of data is received from the real-world 

data server. In this experiment, reliable, ordered communications are assumed with the named 

pipe operating on a first-in-first-out (FIFO) basis ensuring that the modeled-world and real-world 

simulations remain synchronized. Subsequent versions of the framework using the TRTI inte-

grate timestamps directly into the data stream and incorporate data consistence checks. The fol-

lowing pseudo-code further illustrates the structure of the server – client relationship.   

 

Pipe-server (Real-World) 
for (i = 0, i <= simulation period, i++) 
{ advance simulation 1 sec 
read  vehicle speeds from the 8 detectors 
write [8]x[3] to pipe } 
 
Pipe-client (Modeled-World) 
for (i = 0, i <= simulation period, i++) 
{ read [8]x[3] from  pipe 
input vehicle speeds into simulation 
advance simulation 1 sec } 

 

5.1.1.1 Simulated Time Frame 

A four hour simulation time period is used, capturing the transition into and out of the peak pe-

riod. The flow rate is 500 vehicles per hour on the main arterial for the first hour, increasing 

steadily to 900 vehicles per hour over the second and third hours and then returning to 550 ve-

hicles per hour in the fourth hour. At the end of the simulation period the average travel times 

and delays from seven representative paths, along with the queue lengths at each intersection ap-



 

69 

 

proach are collected from both the real-world and modeled-world simulations (Figure 9 and Ta-

ble 4). These performance measures are presented in 10-minute interval aggregations.  

5.1.1.2 Scenarios 

The results from two scenarios are presented. Scenario 1 assumes ideal detector performance, 

with every real-world vehicle and its associated speed accurately detected and passed to the 

modeled-world. Under such an assumption the primary difference between the real-world and 

modeled-world results will be due to randomness in driver and vehicle characteristics and poten-

tially different path selection decisions of a vehicle in the real-world and its simulated counter-

part in the modeled-world. Scenario 2 introduces some of the variability expected in a field im-

plementation from detector failures and speed measurement inaccuracies. The detectors random-

ly failed to detect vehicles with a frequency of approximately 2%. Additionally, the detected 

speeds were allowed to randomly vary higher or lower by up to 10% of the actual vehicle speed. 

In both scenarios the vehicle speed measured over the detector in the real-world is used 

as the desired vehicle speed for the vehicle placed in the modeled-world. However, if the vehicle 

speed was lower than the expected range of desired speeds (48 to 58 kph) it is assumed the ve-

hicle is within congested conditions and the desired speed is randomly set within the preceding 

desired speed range. In this instance the vehicle is placed in the modeled-world at the highest 

speed possible given traffic conditions without exceeding the desired speed. If the vehicle is 

traveling more slowly than its desired speed it will attempt to accelerate to its desired speed as 

quickly as possible.   
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5.1.2 Results and Analysis 

Five replicate runs (R-1 through R-5) were performed. Each replicate run consisted of a mod-

eled-world being driven by the streamed detector data of the real-world simulation, allowing for 

paired comparisons of the real-world and modeled world simulations. Each replicate run utilized 

different random seeds for real-world and modeled-world simulation instances. 

Travel time and delay results for seven paths and queue lengths for three approaches were 

compared between the real and modeled-world simulation instances for the two scenarios.  

Figure 9 presents the network link naming conventions and Table 4 the performance measure 

links considered.  All links in the network are single lane. 

 
Figure 9 Roadway Network and Link Names 
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Table 4 Description of Performance Measures 

Measures Path Links Distance (m) 
Travel Time Delay   

TT-1 DL-1 1-4-9-15 1308 
T-2 DL-2 16-10-3-2 1309 

TT-5 DL-5 11-13 290 
TT-8 DL-8 4-12 366 
TT-9 DL-9 10-13 382 
TT-10 DL-10 4-9 381 
TT-11 DL-11 10-3 383 

Queue Length    
QL-1 1  
QL-6 14  
QL-7 10  

 

 

5.1.2.1 Individual Performance Measures 

For most of the monitored performance measures the Scenario 1 and Scenario 2 modeled-world 

simulations captured the performance of the real-world simulations accurately. For example, 

consider Figure 10 and Figure 11 which present the values of the travel time for path 2 (TT-2), 

from replication 2 (R-2), and of the queue length for path 6 (QL-6), from replication 3 (R-3), re-

spectively, over the four-hour simulated time period. As seen, the modeled-world in both scena-

rios is able to reasonably track performance measures of the real-world through the four hour 

period. 
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Figure 10 Average Travel Time for Travel Time Path 2 (TT-2), Replication 2 (R-2), for the 

Real-World and the Modeled World Scenarios 1 and 2. 

 
 

 
Figure 11 Average Queue Length for Queue 6 (QL-6), Replication 3 (R-3), for the Real-

World, and the Modeled-World Scenarios 1 and 2 
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For instance, in Figure 10 and Figure 11 the absolute differences among the measures 

from the various scenarios analyzed are minimal. The average and standard deviation of the dif-

ference between the values of TT-2 from Scenario 1 are 2.06, and 1.55 seconds; and 2.10, and 

2.12 seconds, respectively for Scenario 2. Similarly, the average and standard deviation of the 

difference between the values of QL-6 from Scenario 1 are 1.96, and 1.46 car-lengths; and 1.96, 

and 1.57, car lengths, respectively for Scenario 2. 

However, when considering all replicated experiment instances it was found that the 

model-world did not always consistently track the real-world. For instance, consider Figure 12 

and Figure 13, which represent the travel time for path 1 (TT-1) from replication 4 (R-4) and the 

delay for path 1 (DL-1) from replication 3 (R-3), respectively. There is a large discrepancy in the 

estimates of these particular performance measures between 8000 and 11000 seconds, the high-

est demand period of the simulated time frame.  The modeled world travel time estimate approx-

imately 73% of the real world travel time for both Scenario 1 and Scenario 2. The delay estimate 

from the modeled world is approximately 44% of the estimate from the real-world.  
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Figure 12 Average Travel Time for Travel Time Path 1 (TT-1), Replication 4 (R-4), for 
Real-World and Modeled-World Scenarios 1 and 2 

 

Figure 13 Average Delay for Approach 1 (DL-1), Replication 3 (R-3), for the Real-World, 
the Modeled-World Scenarios 1 and 2 
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Two potential sources of these errors are: 1) randomness in vehicle routing and 2) a 

smoothing of flows in the model-world. In these experiments the randomness in vehicle routing 

is limited to a vehicle’s turning movement selection at an intersection. Of primary concern is the 

selection between through and left turn movements. For example, the intersection midway 

through the arterial has the highest left turn movement percentage at 16% in each direction. The 

impact of the randomness in left turn movement selection is seen through which vehicles in a 

particular platoon turn left. The left-turn vehicle placement in the queue can dramatically impact 

operations as flows approach capacity, particularly in this study network as a left-turning vehicle 

waiting for a gap will block all following (left, through, or right turning) vehicles. For example, 

if the 1st vehicle in a platoon is attempting to negotiate a left turn at the arterial’s middle inter-

section and is unable to do so the waiting delay is incurred not only for the turning vehicle but 

also for those vehicles queued behind the turning vehicle. Should the last vehicle in the platoon 

attempt to make a left turn, any delay while waiting for a gap will be experienced only by that 

left-turning vehicle.   

This particular source of error cannot be addressed by boundary point sensors without 

knowledge of every real-world vehicle’s desired path through the network. The currently data-

driven simulation is based on the hypothesis that such data is likely to be unavailable, at least in 

the near future. However, detector data from internal network detectors may provide a means to 

address this issue. For example, a mainline detector at the stop-bar could be used to identify 

when vehicles are not moving during a green phase and this information could be passed to the 
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modeled-world simulation. The use of internal network detector information will be one direc-

tion of future research efforts.  

The second issue, a smoothing of flows in the modeled-world, has the potential to 

“smooth” out traffic fluctuations. Currently, irrespective of the headway with which cars enter 

the real-world, the modeled-world implementation algorithm has the effect of rounding the 

headway to the nearest second. This is particularly noteworthy for actuated traffic control, where 

a few tenths of a second can be the difference between a signal gaping out and a car receiving an 

extension of the green phase.  For example, in the replicate runs where the divergence in travel 

time was seen at the middle intersection it was also noted that the side streets tended to receive 

slightly more green time. Overall this would decrease the time given to the mainline and de-

crease the modeled-world delays. Headway smoothing of the entering flows is a likely explana-

tion of the extended side street green time. Future efforts will consider methods to eliminate this 

unintended bias.  

5.1.2.2 Consistency of Results 

The consistency of the performance measures across replicate runs was explored by cal-

culating the difference between the real-world and modeled world performance measures for 

each replicate trial and then averaging over the 5 replicates. Table 14 and Figure 15 illustrate the 

concept of stability using average differences in queue lengths from Scenario 1 and travel times 

from Scenario 2, respectively. 
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Figure 14 Average Difference in Queue Length, Scenario 1 

 

 
Figure 15 Average Difference in Travel Time, Scenario 2 
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The above figures indicate that the methodology being considered is rather stable except 

for a few instances were performance measures differed during the period being considered in a 

particular replicate trial. The reason for these differences is discussed in the previous section and 

will be the focus of future efforts. Overall, the modeled-world is generally successful at replicat-

ing performance measures of the real-world. In addition the method is seen to be resilient to rea-

sonable detection errors, that is, drastically faulty data or complete detector failure is not consi-

dered in this analysis.   

5.1.3 Limitation and Future Direction 

In designing the proof of concept experiment, the research team limited the data passed from the 

real-world simulation to the modeled-world simulation to data that could be obtained in a field 

implementation. That is, the modeled-world was not provided with more information than may 

be detected on today’s roadways. However, in VISSIM there are approximately 12 potentially 

influential parameters that are used for the purposes of calibrating traffic simulation models. Ta-

ble 5 lists these parameters [39]. In the discussed experiment these 12 parameters are the same in 

the real-world and modeled-world simulations. This results in the modeled-world simulation 

having “perfectly” calibrated parameters relative to the real-world. 
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Table 5 Description of VISSIM Calibration Parameters 

Parameters 
  
Emergency stopping distance Minimum headway 
Lane changing distance Desired safety distance parameters 
No. observed preceding vehicles Maximum deceleration 
Maximum look ahead distance -1 m/s^2 per distance 
Average stand still distance Accepted deceleration 
Waiting time before diffusion Distance of standing and 50km/h 

 

One of the key next steps is the exploration of the impact of these calibration parameters 

and other sources of randomness in the simulation. Section 6 presents an in depth discussion on 

model calibration. In additional next research steps also include identifying, quantifying, and ad-

dressing the factors that resulted in the significant variation noted during the peak demand pe-

riod.  Of primary interest will be two issues discussed in section 5.1 however other possible 

sources for the variation will also be sought.  

Finally, the current model is limited to detection at boundary points of the model.  Future 

work will seek the incorporation of detection data from internal detectors into the model calibra-

tion. This will consider standard detections (i.e. typical actuated control layouts) and the possible 

of new detector placement specifically designed to aid a real-time simulation. 

5.1.4 Experiment #1 Summary 

This experiment explored a methodology to develop a data-driven online simulation tool to de-

liver real-time performance measures with the aid of microscopic traffic simulation. The major 

objective of this experiment was to demonstrate the feasibility of such as real-time simulation. A 
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proof of concept experiment was designed to have one microscopic traffic simulation instance 

reflect the performance measures of second model, using only data that could be polled from a 

detector. This experiment was accomplished through the use of two VISSIM simulation in-

stances, where one represented the real-world and the other, the modeled-world.  

The results from this experiment demonstrated that the modeled-world is capable of re-

flecting the performances measures of the real-world with a relatively high level of accuracy. 

However, some notable discrepancies were seen. Despite the current discrepancies and limita-

tions of the experimental design, the results presented support the likely feasibility of this ap-

proach.  

5.2 Experiment #2: Field Test with Temporary Detectors 

In experiment #1, the results of preliminary studies to determine the feasibility of the proposed 

framework are presented. Given the feasibility of the proposed methodology in a simulated envi-

ronment, a field test was developed to explore the methodology’s robustness. The goal of the ini-

tial field test was, in part, to determine whether a VISSIM simulation instance could be driven by 

real-time, real-world, detector data and produce performance measures that reflect those of the 

area being simulated. To conduct this experiment, the 5th Street / Ferst Drive corridor in the mid-

town Atlanta area on the Georgia Tech campus was selected as the arterial to be studied (see 

Figure 16). The experiment was conducted for 90-minutes, during the peak noontime period on 

July 16, 2009. 
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A VISSIM model for the test bed area was developed. Real time detector data was 

streamed into the VISSIM simulation model from boundary detectors (Figure 17). While not 

used in this experiment midblock detector data was also streamed and logged for potential use in 

future concept development efforts. For this experiment temporary detectors where utilized. De-

tector data was transmitted over Georgia Tech’s wireless network to a central data processing 

server. A time stamped message was sent for each vehicle that crossed a detector. The time 

stamped data included the link number and lane number of the reporting detector and the meas-

ured vehicle speed. In addition, the corridor was outfitted with temporary cameras located at 

each of the six intersections that record arterial operations during the experiment.  The cameras 

facilitate the post-hoc extraction of travel time data to be used in the evaluation of the real-time 

simulation performance. In addition, two GPS equipped vehicles logged their location and speed 

data as they traversed the study corridor during the experiment. Figure 17 shows the VISSIM 

representation of the test site and the locations of detectors and cameras along the 5th Street NW 

and Ferst Drive NW corridor. At the end of the 90-minute test period the logged data was 

processed and various performance measures extracted for comparison with the simulation out-

put. 
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Figure 16: 5th Street NW/Ferst Drive NW Study Corridor (red line), Atlanta GA [4] 

 

 
Figure 17 VISSIM Representation of the Study Corridor 
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5.2.1 Results and Analysis 

The camera and video based field travel time data were compared with the VISSIM mod-

el to determine how well the data-driven simulation was able to reflect field travel times. Two 

primary sets of travel times were obtained: eastbound (EB) and westbound (WB). Scatter plots of 

the data are shown in Figure 18 and  

Figure 19. For the eastbound data,  

Figure 19, one can readily infer that the VISSIM travel times are similar to the field tra-

vel times, with exceptions at the boundaries of the graphic where the VISSIM travel times appear 

to be higher than the field travel times. For the westbound data sets, Figure 18, there is less simi-

larity between the VISSIM and field travel times. From the westbound graphic the field travel 

times appear systematically in the lower range of travel times output by VISSIM.   
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Figure 18 Westbound Travel Times - VISSIM vs. Field 

 

 

Figure 19 Eastbound Travel Times VISSIM vs. Field 
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The descriptive statistics were next examined (Table 6).  In the eastbound dataset, the 

VISSIM travel times have a mean of 183.1 seconds and a standard deviation of 39.3 seconds.  

The field measured travel times have a mean of 218.4 seconds and a standard deviation 50.1 

seconds.  The higher eastbound field measured travel time does not appear to be systematic but 

heavily influenced by a cluster of high values near the end of the run.  An analysis of the data 

removing the last fifteen minutes reduces the difference in average travel time between the East-

bound simulated and field results by approximately 45% percent, from a travel time of 218.4 to 

202.3 seconds. Potential reasons for this cluster will be discussed later in the section.  For the 

westbound direction, the mean and standard deviation of the VISSIM travel times are 157.5 

seconds and 38.9 seconds respectively, while the field measured travel times the mean and stan-

dard deviation are 113.4 seconds and 63.0 seconds, respectively.   

Table 6 Descriptive Statistics for Eastbound and Westbound Travel Times  

Statistic Eastbound Travel Time Westbound Travel Time 
 VISSIM Field VISSIM Field 

Mean 183.1 218.4 157.5 113.4 
Standard Deviation 39.3 50.1 38.9 63.0 

 

Next, statistical tests were conducted to determine whether the VISSIM and the field 

measured travel times are statistically different. First the distributions were tested for normality 

as this will influence the statistical test chosen. Lilliefors normality tests were conducted on all 

the travel time data sets. The results of the normality tests are presented in Table 7. From these 

results one is unable the reject the null hypothesis that the eastbound VISSIM and Field travel 

times are normally distributed. However for westbound VISSIM and Field travel times the nor-
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mality test results provides sufficient evidence for one to reject the assumption that these datasets 

are normally distributed. These conclusions were further corroborated after examining a series of 

density plots, Figure 20 and Figure 21, and Q-Q plots, Figure 22 and Figure 23. 

 

Table 7 Statistical Test Results 

Statistical Test p-Value Interpretations 

Normality Test   

EB VISSIM 0.3255 Unable to reject normality assumption 

WB VISSIM 0.0001 Reject normality assumption 

EB Field 0.6760 Unable to reject normality assumption 

WB Field 0.0088 Reject normality assumption 

2 Sample t-Test   

EB VISSIM vs. EB Field 0.0001 Reject equal mean assumption 

WB VISSIM vs. WB Field 0.1125 Unable to equal mean assumption 

Wilcoxon Sum Rank Test   

EB VISSIM vs. EB Field 0.0001 Reject equal median assumption 

WB VISSIM vs. WB Field 0.0408 Reject equal median assumption 

Chi-Square Test   

EB VISSIM & EB Field 0.3654 Unable to reject same distribution assumption 

WB VISSIM & WB Field 0.1560 Unable to reject same distribution assumption 

Kolmogorov-Smirnov Test   

EB VISSIM & EB Field 0.0016 Reject same distribution assumption 

WB VISSIM & WB Field 0.0235 Reject same distribution assumption 
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Figure 20 Density Plot of VISSIM vs. Field Westbound Travel Times 
 

 

 Figure 21 Density Plot of VISSIM vs. Field Eastbound Travel Times  
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Figure 22 Q-Q Plots of Field and VISSIM Westbound Travel Times 
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Figure 23 Q-Q Plots of Field and VISSIM Eastbound Travel Times 

 

A series of other statistical tests were conducted to further explore the differences be-

tween Field and VISSIM travel time estimates.  These tests were also used to quantify some of 

the similarities and dissimilarities that were observed, especially from the density plots. The test 

results are also included in Table 7.    

From the above results one can conclude that there is a statistical difference between the 

VISSIM and the actual (mean / median) travel times, in both the eastbound and the westbound 

directions. However, it is again noted that if the last fifteen minutes of data were not included in 

the eastbound analysis the result is reversed, with the test failing to reject equal means. This fur-

ther indicates an event specific issue rather that a systemic problem eastbound.   
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Several areas are perceived as potential sources for the discrepancies between the esti-

mated and actual performance measures. These areas are generally related to model calibration 

and facility representation. For model calibration the parameters that reflect driver behavior were 

left unchanged in VISSIM, potentially indicating that the default driver behavior in the VISSIM 

model may not be representative of the behavior along the study corridor. Accurately capturing 

driver behavior may improve VISSIM estimates of travel times. In addition, considerable differ-

ences in simulated vs. field volumes were observed on some links. In part this is a result of simu-

lated turning movement distributions at the various intersections throughout the corridor differ-

ing significantly from the field movements. Historical turning movement percentages where uti-

lized as real-time turning counts were not available. It is also noted that volume discrepancies 

could result from detector errors. The Tech Trolley (an on-campus shuttle) was also not 

represented. By not capturing the Trolley behavior, VISSIM is not able to simulate the increase 

in travel time for other vehicles that the Trolley may inhibit as it traverses the corridor. 

There are two aspects of the study corridor that were not represented in the VISSIM 

model of the area. The first was the roadway gradient, which is positive from west to east, and 

the second, the pedestrian and pedestrian facilities along the corridor. Thus, any influence from 

these factors is not reflected in the VISSIM model.  Pedestrians in particular were noted as a po-

tential significant factor. The probe vehicle drivers noted instances where pedestrian movements 

significantly interfered with traffic flow.  For example, at the intersection of 5th Street and Spring 

Street left turning vehicles yielding to crossing pedestrians would prevent through vehicles be-

hind the left turning vehicle from traversing the intersection. As no pedestrians were modeled in 
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VISSIM this behavior was not reflected. For the test bed the pedestrian interference was particu-

larly notable as given the nature of a college campus there tends to be periods in which signifi-

cant, short duration, increases in pedestrian activity occur. The influence of pedestrian activity on 

simulation models is investigated and discussed in detail in Section 8.   

5.2.2 Experiment #2 Summary 

In experiment #2 the researchers were able to demonstrate the fundamentals of the proposed me-

thodology in a field test using readily available technology. The microscopic traffic simulation 

model was able to be driven in real-time by real-world data streams.  The comparative analysis 

demonstrated some success particularly when considering the eastbound travel times. It is antic-

ipated that once sources of identified discrepancies are addressed the VISSIM model will be able 

to produce better estimates of travel times. 



 

92 

 

5.3 Experiment #3: Field Test with Temporary and Permanent Detectors 

Test #3 is a full scale test of the methodology.  The field test was conducted on July 8, 2010, be-

tween 1:00PM and 3:00PM. The study area is the same as the previous test (Figure 16:). Both 

permanent (Video Detection System (VDS)) and temporary detectors, capable of streaming indi-

vidual vehicle records, were employed during this test. In addition to the temporary and perma-

nent detectors six camcorders were used to collect additional traffic information for post 

processing. Four camcorders were used to detect boundary conditions (i.e. when vehicles enter 

and exit the network) while two were used to collect signal phase information at the intersections 

of 5th Street and Spring Street, and 5th Street and W. Peachtree Street. The location of each detec-

tor, and their respective detection zones, including the camcorders and their view angles are 

shown in Figure 24. In addition, probe vehicle travel routes were added to allow for a more ro-

bust evaluation of the system. In this field test four routes are monitored, each of which are tra-

versed by two probe vehicles, see Figure 25.    
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Figure 24 Detector Locations Throughout the Study Area 

 
 
 

 
Figure 25 Probe Vehicle Routes Through Study Area 
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Each permanent VDS camera is connected to the Georgia Tech fiber network and is ca-

pable of detecting and transmitting individual vehicle records in real-time. The temporary detec-

tors consisted of research assistants with laptop computers using a script to record and transmit 

individual vehicle data back to the server in the laboratory. These detectors were primarily 

tasked with detecting the four probe vehicles. By identifying the probe vehicles in the field in 

real time they could be identified as they entered the simulation, allowing for a more robust 

paired travel time comparison in the later analysis. The temporary detector on the 5th Street 

bridge was also tasked with detecting non-probe vehicles as a permanent VDS camera was not 

available for this site.   

Each packet of transmitted detector data includes six fields. They are detector number 

(each detector location having a unique number), lane number, speed (in miles per hour), detec-

tor time, and epoch time. Table 8 provides a sample of streamed data. Clock time is also pre-

sented in the sample below but it is determined from the epoch and not transmitted by the detec-

tors.   
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Table 8 Sample of Streamed Detector Data 

Detector # 
Lane # Speed (mph) Timestamp Epoch Time Clock Time 

4 2 18 13:00:45 1278608487.375490 13:01:27 

11 1 22 11:04:17 1278608487.578350 13:01:28 

11 3 8 11:04:17 1278608487.677290 13:01:28 

11 2 6 11:04:17 1278608487.779180 13:01:28 

10 1 17 13:01:25 1278608487.935580 13:01:29 

5 1 26 13:00:20 1278608487.200850 13:01:29 

1 1 6 12:57:53 1278608487.419210 13:01:29 

11 3 9 11:04:19 1278608487.778030 13:01:30 

 

During a preliminary test, videos feeds were compared to VISSIM animation to verify 

that as a vehicle entered a detection zone the detector data was successfully transmitted and 

VISSIM generated a vehicle in the appropriate position.  Figure 26 is an example image from the 

verification process.   
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Figure 26 Permanent Detector Generating Vehicle in VISSIM in Real-Time 
 

Data was collected for approximately 120 minutes.  At the end of this data collection, six 

different data streams were available: 

• GPS data from the 4 probe vehicles 

• Signal phase information from the two signalized intersections 

• Vehicle presence from permanent video detectors 

• Probe vehicle presence from temporary detectors  

• Individual vehicle travel times over the pre-defined routes 

• VISSIM trajectory data for all vehicles generated from the arriving data stream 
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5.3.1  Results and Analysis 

Where the previous tests focused on aggregate travel times this experiment sought to evaluate the 

real time simulations ability to estimate an individual vehicle’s travel time through paired travel 

time comparisons. Probe vehicle travel times were extracted from the video footage and from the 

simulation’s equivalent vehicle. These two sets of travel times were then compared.   

The following discussion focuses on travel times for probe vehicles traveling along routes 

#2 and #4 as similar inferences can be made from the analysis of the data from routes #1 and #3. 

Route #2 is approximately 1300 feet in length and traverses three signalized intersections (Figure 

25). Route #4 is approximately 1600 feet in length and includes three signalized intersections.  

Twenty four pairings of travel times were collected from Route #2 and 36 from Route #4.  

Each pairing consists of a field probe vehicle travel time and the respective simulation estimate.  

The average field travel time for Route #2 is approximately 94 seconds and the simulation esti-

mate is approximately 85 seconds.  The Route #4 field travel time estimate is approximately 136 

seconds and the simulation estimate is approximately 121 seconds. These and other descriptive 

statistics can be seen in Table 9. Figure 27 and Figure 28 present scatter plots of individual travel 

time estimates. Figure 29 and Figure 30 are also included to present travel time data from Route 

#1 and Route #3. Figure 31 presents four pairs of density plots to further compare each pair of 

travel time estimates for each route.   
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Table 9 Descriptive Statistics of Travel Times for Route #2 and #4 

Mean Travel Time Standard Deviation Travel Time 
Route # VISSIM Field VISSIM Field 

1 138.6 141.5 20.9 20.6 
2 84.8 93.5 27.7 27.1 
3 42.8 45.65 23.0 31.8 
4 121.3 135.6 30.6 27.2 

 
 
 
 
 

 

Figure 27 Route #2 Travel Times - VISSIM vs. Field  
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Figure 28 Route #4 Travel Time - VISSIM vs. Field 
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Figure 29 Route #1 Travel Time – VISSIM vs. Field 
 
 

 
 

Figure 30 Route #3 Travel Time – VISSIM vs. Field 
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Figure 31 Density Plots of VISSIM and Field Travel Times for Routes #1 - #4 

 

Similar to the previous analysis a series of statistical tests was conducted. The conducted 

tests include a paired t-test and a sum rank test, to compare means/medians, and chi-square test 

and a Kolmogorov-Smirnov test, to compare distributions.  The results of these tests are pre-

sented in Table 10.   
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Table 10 Test Statistics  

Statistical Test p-Value Interpretations 

Normality Test   

Rt. #2 VISSIM 0.00001 Reject normality assumption 

Rt. #4 VISSIM 0.00000 Reject normality assumption 

Rt. #2 Real-World (RW) 0.06387 Unable to reject normality assumption 

Rt. #4 Real-World (RW) 0.00198 Reject normality assumption 

2 Sample t-Test (Paired)   

Rt. #2 VISSIM vs. Rt. #2 RW 0.28670 Unable to reject equal mean assumption 

Rt. #4 VISSIM vs. Rt. #4 RW 0.00013 Reject equal mean assumption 

Wilcoxon Sum Rank Test   

Rt. #2 VISSIM vs. Rt. #2 RW 0.05382 Unable to reject equal median assumption 

Rt. #4 VISSIM vs. Rt. #4 RW 0.00549 Reject equal median assumption 

Chi-Square Test   

Rt. #2 VISSIM & Rt. #2 RW 0.28930 Unable to reject same distribution assumption 

Rt. #4 VISSIM & Rt. #4 RW 0.15740 Unable to reject same distribution assumption 

Kolmogorov-Smirnov Test   

Rt. #2 VISSIM & Rt. #2 RW 0.03101 Reject same distribution assumption 

Rt. #4 VISSIM & Rt. #4 RW 0.00864 Reject same distribution assumption 

 

Based on the scatter plot data and the statistical tests it may be concluded that the simula-

tion reasonably reflects the real world however differences do exist. It is noted immediately that 

a significant improvement from the previous test was the synchronization the signal in the simu-

lation with the field, likely accounting for much of the improved performance.   

However, several issues may be readily noted when reviewing the analysis. Firstly, the 

simulated estimates of the probe vehicles’ travel time tend to be lower than the field measured 

travel time. One potential reason for this result is vehicle acceleration rate in the field versus the 

simulation. During the test run the research team noted that the vehicles in the simulation ap-

peared to accelerate to their desired speeds more aggressively than vehicles in the field. Accele-

ration rates can be a significant factor, particularly in a network dominated by signalized inter-
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sections. These rates can determine whether a vehicle arrives on red or green at a downstream 

intersection, which directly affects travel time estimates as well as other performance measures.  

For instance, on several occasions it was observed that a simulated vehicle successfully traversed 

a downstream signal with the corresponding vehicle in the field arriving a few seconds later 

stopped at a red light. While differences in acceleration rates do not often lead to such dramatic 

differences, they also can lead to more subtle changes.  This again highlights the need for under-

lying calibration of the simulation model.   

There are a several other subtleties that may be contributing to the discrepancies in travel 

time estimates. As mentioned previously, three of the more significant contributing factors are 

signal synchronization, vehicular volume traversing the network, and turning movement distribu-

tions. In the preceding experiment the research team was able to develop a methodology to syn-

chronize the signals in the simulated environment and the field. However, real time methodolo-

gies are not yet available to address the other two issues.  The next reported test attempts to re-

move these issues and explore the capabilities of a real time simulation given (near) perfect data. 

 

5.4 Experiment #4: NGSIM’s Peachtree Corridor Study 

5.4.1 Motivation and Background 

Experiment #4 may be described as a pseudo field test. The experiment utilizes a near ideal data 

set (tenth of a second resolution of vehicle positions on the corridor, route data for every vehicle, 

individual vehicle turning movement data, and signal status at a tenth of a second resolution) to 
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determine the performance of the real time simulation under ideal conditions. That is, under ideal 

data collection conditions is a real time simulation capable of providing a reasonable reflection 

of the real world. This experiment uses previously collected field data as input to the real time 

simulation, streamed in wall clock time. This data was collected as part of the FHWA Next Gen-

eration Simulation (NGSIM) program [50].  The NGSIM program created high fidelity data sets 

intended for use in the study of traffic behavior and the development of the next generation of 

traffic simulation tools and algorithms.   

The NGSIM data set utilized is for Peachtree Street, Atlanta GA. The studied segment 

extended just south of the intersection of Peachtree and 10th Street and north of the intersection 

of Peachtree and 14th Street, Figure 32.  [50]   
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Figure 32 Peachtree Study Corridor [4] 

 

The NGSIM Peachtree dataset comprises of trajectory data (with a resolution of a tenth of 

a second) for all vehicles traversing the corridor during the study period. Trajectory data was ga-

thered on November 8, 2006, between 12:45PM and 1:00PM and 4:00PM and 4:15PM. In addi-

tion signal phase information at each intersection, origin-destination data (OD) for each vehicle, 

turning movement distribution at each intersection, and a series of other traffic related informa-
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tion were also collected. Video of the entire corridor is also available during data collection pe-

riods.  

5.4.2 The Study 

For the experiment, a detailed VISSIM model of the study area (Figure 33) was created. Road-

way geometry was based on existing conditions at the time of the experiment and additional in-

formation such as vehicle volume, turning movement distribution, routing decisions and signal 

timing plans were added based on the NGSIM data set. Several verification iterations were com-

pleted to ensure that the model correctly represented the area being studied, as well as the traffic 

conditions during the study period. During this verification process issues related to the number 

of vehicles traversing the corridor and to signal timing plans were identified.  
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Figure 33 VISSIM model of Peachtree Study Corridor [4] 

 

For instance, the number of vehicles, and subsequent turning movement distributions, 

were initially based on the summary reports produced by the NGSIM program.  However, the 

team noticed that there were discrepancies between these summaries and counts extracted by 

hand from the videos.  To address this issue, a software tool was developed to help record vehi-
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cular volume and turning movement counts from the videos.  Errors identified in the NGSIM da-

ta were corrected, as best as possible, in the utilized VISSIM data set.   

The NGSIM data also provided a direct observation of the signal indications. The observed sig-

nal indication did not appear to coincide with the provided signal timing controller data, likely 

indicating that the provided controller data was out of date. Thus, the signal indication data and 

engineering judgment was utilized to develop likely signal timing plans that would match the 

indication observations. The final simulation model is based on these plans, which includes off-

set observations. It is noted that during the observation periods (approximately 15 minutes) the 

offsets did appear to drift by a few seconds in the NGSIM data. To address this issue an average 

estimated offset is utilized.   

5.4.2.1 Simulating Data Stream 

To simulate streaming detector data the team used trajectory and OD data to create a VISSIM 

trip-chain file which approximates the process of streaming detector data into the real-time simu-

lation. A trip chain file is able to approximate a detector stream as each file’s record consists of a 

time-stamp, indicating when a vehicle entered the network (i.e. crossed a boundary link detec-

tor), and a zone number indicating a vehicle’s origin (i.e. the boundary detector crossed) and des-

tination.  This string of information is similar to that from a detector, except for a vehicle’s desti-

nation.  However, destination zones are often times approximated through historical turning 

movement.   
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With this method of approximating streaming detector data, a number of issues were en-

counter during the creation of the trip-chain file.  The most important piece of information that is 

needed to create a trip-chain file is correct OD pairs. However after examination of the OD in-

formation given by the NGSIM program it was noticed that a number of OD pairs were poten-

tially incorrect. For example, there were OD pairs that suggested an unusually large number of 

vehicles performed a u-turn maneuver.  To verify these maneuvers the OD distribution tables 

from NGSIM’s Summary Reports and the corresponding videos were examined [51], [52].   

Simultaneous examination of the distribution tables and videos revealed errors associated 

with assigned OD pairs. For instances, the u-turns were often left turns from the mainline to ap-

proaches leaving the network.  In addition, there were assigned OD pairs that were not traversed 

by any vehicles during the study period. These errors largely occurred when the tracking soft-

ware lost its handle on a vehicle that it had identified and began a new track for the same vehicle. 

To correct these issues engineering judgment was use to identify potentially erroneous OD pairs 

and necessary corrections were made by observing the vehicle on the video. 

5.4.3 Preliminary Results and Analysis 

Using the corrected NGSIM data final trip-chain files where created and used for the VISSIM 

data input. Ten replicate runs were conducted for the comparison between field and simulated 

performance measures. Similar to previous tests, travel time is the performance measure moni-

tored and compared. Table 11 presents a summary of the simulated travel times from each of the 
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10 replicates and a summary of the field travel times. Note, data corresponding to the 12:45PM – 

1:00PM period is referred to as the Noon period and 4:00PM – 4:15PM is referred to as Evening.   

 

Table 11 NGSIM versus VISSIM (VSM) Travel Time Results 
    Noon - North Noon - South Evening - North Evening - South 

    Avg (s) Std Dev Avg (s) Std Dev Avg  (s) Std Dev Avg (s) Std Dev 

VSM Run # 1 120.0 31.7 102.0 20.5 108.1 28.8 100.3 29.0 

  2 120.7 33.9 100.9 21.7 113.3 32.4 99.3 29.8 

  3 117.4 34.5 98.4 22.9 111.5 30.4 94.6 27.6 

  4 118.1 32.2 98.6 25.1 118.8 29.8 100.2 28.2 

  5 116.0 31.5 96.6 22.6 116.7 34.0 103.1 29.5 

  6 112.5 31.1 98.8 23.4 112.5 32.1 104.8 30.1 

  7 113.7 32.2 96.4 24.6 114.2 32.2 102.4 29.8 

  8 119.0 33.1 99.3 22.9 113.6 36.0 99.8 28.9 

  9 116.5 31.8 100.0 20.4 108.7 33.6 104.2 31.5 

  10 113.8 31.2 95.1 25.8 113.1 32.7 103.1 28.8 

VSM Avg.   116.8 32.3 98.6 23.0 113.1 32.2 101.2 29.3 
NGSIM   131.5 36.7 106.6 17.1 140.4 35.4 133.9 29.6 
% Error 11.2  11.8 7.5 34.1 19.5 9.0 24.4 0.9 

 

 

In the following discussion the referenced VISSIM results are the average of the 10 repli-

cate runs. It is noted that there are some discrepancies between the simulated and field travel 

time estimates. A key difference is that VISSIM tends to under estimate field travel times. The 

smallest difference between VISSIM and field travel time is approximately eight seconds, occur-

ring for the Noon-South time period. While the largest difference, 32.7 seconds, occurred for the 

Evening-South period. The simulation does a slightly better job estimating travel times for the 

noon period versus the evening. When comparing the standard deviations in Table 11, the values 
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produced by VISSIM are similar to those from the field. This is observation is encouraging as it 

indicates that VISSIM’s approximation of the variation travel time estimates is rather similar to 

that of the field. With dissimilar means and “similar” standard deviations the research team an-

ticipates that the observed discrepancies may be addressed through a more rigorous calibration 

effort. Density plots were examined to further corroborate this hypothesis, see Figure 34. 

 

Figure 34 Density Plots of Field vs. VISSIM (single run) Travel Times  

 

The density plots of the simulated travel times generally capture the bi-modal or tri-

modal form of the field travel times.  The differences between the plots tend to be a shifting of 

the centroid of the modes or proportionality between the different modes. However, in all cases 
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the general form of the distribution is reflected, a very encouraging finding, likely indicating 

many of the differences can be addressed in calibration. 

Finally, in addition to the travel time distribution plots the Time-Space-Diagrams for the 

field and simulated data were generated.  Distinct discrepancies in driver behavior were observed 

as illustrated in Figure 35 and Figure 36.   
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Figure 35 Northbound Real-World Time-Space Diagram  

 

 

Figure 36 Northbound VISSIM Time-Space Diagram  
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In the above figures each line represents the trajectory of a vehicle as it traverses the 

length of the study corridor with respect to time.  The colors along each trajectory represent cur-

rent vehicle speed relative to the maximum speed along the corridor.  Red represents speeds of 

approximately zero mph, green represents speeds of approximately 35 miles-per-hour, and 

shades of each color represent speeds between 0 and 35 miles-per-hour.  In comparing field and 

simulated trajectories it is apparent the simulated traffic is less variable (i.e. the traffic flow is 

“smoother”), with less interaction between vehicles. One of the more recognizable differences is 

that simulated vehicles tend to achieve their desired speed more quickly and maintain that speed 

for longer periods. A likely reason for this difference is that simulated drivers are being modeled 

with more aggressive tendencies than their field counterparts and less variability in aggressive-

ness across drivers. As a result of this more aggressive driving by simulated vehicles they will 

tend to traverse the corridor in less time versus vehicles in the field, and may clear an intersec-

tion during the green or amber phase while their field counterpart may not make through that in-

tersection at that point in time. Such scenarios are supported by the travel time measurements 

that are presented in Table 11 as VISSIM tends to underestimate real-world travel times.   

Given the above results for the NGSIM pseudo field experiment and the insights afforded 

by the time space diagrams the research team anticipates that more accurate estimates of field 

travel times may be achieved through an advanced calibration procedure.  This procedure will 

involve a Monte Carlo parameter selection method which determines the most effective parame-

ters to calibrate a VISSIM simulation model.  Chapter 6 will present this proposed calibration 

procedure in detail.     
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6 ADVANCED MODEL CALIBRATION PROCEDURE 

As seen calibration is a key step in developing an accurate simulation model. The calibration 

process involves the selection of values for adjustable modeling parameters that allow a particu-

lar model to most accurately reflect the specific network conditions under consideration. A num-

ber of procedures have been proposed for calibrating traffic simulation models.  While most of 

these procedures focus on determining values for a small set of parameters for relatively simple 

models, many modern simulation tools include an increasingly complex array of parameters 

available for calibration. Many of these additional parameters may have little influence on simu-

lation results, while others may have a significant impact.    

The following will summarize a sensitivity procedure for determining which model pa-

rameters are most important for calibrating a simulation model.  As a case study, this sensitivity 

procedure is applied to an arterial simulation model based on the VISSIM microscopic simula-

tion tool to identify critical parameters that would need to be evaluated during subsequent model 

calibrations.  For greater details regarding this method, readers are encouraged to consult [53]. 

6.1 The Method 

The developed sensitivity-based process for the selection of parameters to be included in model 

calibration is comprised of four sequential steps: 1) initial parameter selection, 2) performance 
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measure selection, 3) Monte Carlo simulations, and 4) parameter elimination. Steps 3 and 4 are 

repeated until the stopping criterion is satisfied. 

6.1.1 Initial Parameter Selection 

In the first step of the process, model parameters that are known a priori to have little, if any, im-

pact on simulation results due to the structure of the model are eliminated prior to the sensitivity 

analysis. For example, in the VISSIM modeling system the Wiedemann (1974) and Wiedemann 

(1999) car following equations are used to define arterial operations and freeway operations re-

spectively [54], [55].  If the model being calibrated does not include one these facility types, pa-

rameters related to the respective car following equations may be removed from the calibration. 

A priori elimination of parameters that do not influence a model will reduce the computa-

tional effort in subsequent analysis, lessening the time and resources required to select the final 

set of parameters for calibration.  However, if it is uncertain whether a parameter should be elim-

inated it is recommended that the parameter remain in the experiment. Also, if resources permit, 

this step may be eliminated in its entirety and all parameters included in the subsequent selection 

process.   

6.1.2 Performance Measure Selection 

As part of the calibration process it is necessary to select the performance measure(s) that will be 

used to gauge the acceptability of the simulation model.  Common performance measures in-

clude travel times, flows, capacities, delay, queue lengths, etc. Measures of effectiveness should 
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be selected such that critical network components, such as key intersections or interchanges, and 

the overall network, i.e. end-to-end corridor travel time, may be evaluated. The measure(s) must 

also be field measurable, allowing for the collection of field data to be used in the calibration 

process.  Analyst judgment is normally required in the selection of performance measures for the 

particular model under study. However, in the initial stages, it is recommended to include a wide 

cross section of potential measures, paring down the measures in later analysis to those that are 

most informative. 

6.1.3 Monte Carlo Simulation Experiment 

A Monte Carlo experiment is next used to determine the likely influence of the remaining para-

meters on the simulation model performance. In the Monte Carlo simulation experiment simula-

tion runs are generated based on randomly selected parameter values with the results aggregated 

in an effort to find underlying relationships between parameter values and model performance 

measures.  

 

6.1.3.1 Parameter Range Selection 

Before generating random parameter values for the Monte Carlo experiment it is necessary to 

determine parameter ranges over which the random values will be assigned.  There is generally 

no exact method for this determination.  These ranges must be determined through a combination 

of past experience, simulation documentation, results of other studies, and engineering judgment. 
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For instance, the VISSIM documentation provides insight into model behavior and reasonable 

ranges for a number of parameters. The objective of range selection is to cover all feasible para-

meter values while excluding values which may introduce impractical or flawed behavior in the 

model. When the analyst is uncertain of a reasonable parameter range it is recommended in the 

initial step to use a more inclusive range and, if necessary, narrow the range in later process ite-

rations.  

6.1.3.2 Random Parameter Generation 

Random parameter values within the given parameter ranges must be generated.  A random set 

of parameters is required for each simulation run.  Random numbers should be generated using a 

reasonable random number generator [56].  The number of parameter sets needed is determined 

using standard sample size statistics [39] influenced by level of effect in the selected perfor-

mance measure deemed to be significant (e.g. 1%, 5%. etc. changes), the reasonable range of pa-

rameter values, and the sensitivity of performance measure to changes in the parameters. While 

the sensitivity to parameters must be based on analyst expertise, initial assumptions may be vali-

dated using the observed variability from the initial iteration of the methodology.  For instance, it 

was seen in this effort that the modeling variability based on parameter variation (parameters va-

ried within a reasonable range) was typically well within ten percent.   
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6.1.3.3 Simulation Runs and Sensitivity Analysis 

Each set of randomly generated parameter values is used to generate simulation trials in the 

Monte Carlo study. The results of the simulation runs are evaluated to determine which parame-

ters appear insignificant. It is important to note that this step is not attempting to quantify the ma-

thematical relation-ship between the performance measure and parameter; it is only intended to 

identify the potential existence of a relationship.  A convenient method to quickly identify these 

potential patterns is to visually inspect a scatter plot of the parameter value versus the perfor-

mance measure (a unique plot for each parameter). The analyst may also wish to include a best 

fit line to aid in the visual assessment. Scatter plots allow for a quick visual assessment of the 

influence of the given parameter over its considered range, allowing for a ready recognition of 

any potential relationship between the parameter and performance measures since human ana-

lysts are more likely to identify patterns when none exist than to miss patterns that are actually 

present.   

In addition to the scatter plot it is also recommended to evaluate the effect each parameter 

has on the mean value of the performance measure. The effect on the mean is equal to the slope 

of the best fit line of the scatter plot multiplied by the absolute value of the range of values for 

the given parameter, Equation 1. These values may then be used to rank each parameter based on 

its effect on the mean of each selected measure of effectiveness. 

 

Effect of the mean = slope((MOE values)1
�

n * (Parameter Values)1
�

n) 
                                                   * abs (Parameter Upper Bound – Parameter Lower Bound)        (1) 
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This ranking requires a simplifying assumption of a linear relationship between parameter values 

and the performance measure.  Based on the scatter plots for the study described in this effort 

this was deemed to be a reasonable assumption when considering parameter values within a rea-

sonably narrow range.  However, in inspection of the scatter plots it should be considered if the 

relationship between the parameter value and performance measure differ significantly from li-

near.  Should this exist, then a more robust ranking metric should be considered.   

Finally, the variance of the performance measure, due to changes in parameter values, 

should be considered. If the variance increases or decreases then the corresponding parameter 

should remain in the analysis, even if the impact on the mean value is minimal. 

6.1.4 Parameter Elimination 

Parameters found to display minimal impact on simulation model output through either visual 

inspection of the scatter plots or the effect on the mean should be eliminated from further consid-

eration.  To avoid analyst bias in the parameter selection it is useful to develop guidance for de-

termining whether a parameter should be considered significant. Such guidance would be specif-

ic to each model and performance measure. The analyst must decide what level of impact is 

deemed significant for the particular study. For instance in an initial alternative analysis a 10% 

error may be tolerable and therefore the effort and resources should not be expended to calibrate 

parameters whose effect is under 10%. Whereas in a detailed final design application it may be 

desirable to consider any parameter whose possible impact on the performance measures may be 

within just a few percent.  
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To avoid eliminating parameters that may be significant it is advised that conservative 

elimination guidance be employed, particularly in the initial iteration of the parameter selection.  

Additionally, it may be desirable to carry forward a parameter that intuitively seems significant 

but does not appear to be significant in the current iteration, allowing for confirmation of signi-

ficance (or insignificance) in the next iteration. The number of variables to be eliminated per ite-

ration is ultimately an analyst judgment. While the parameter reduction should be a function of 

the findings, a general guideline for good practice is that number of parameters eliminated 

should not exceed approximately one-half of the total parameter set in the initial iteration and 

one-third in subsequent iterations.  

6.1.5 Iteration 

After parameter elimination the Monte Carlo simulation experiment (random parameter genera-

tion, simulation trails, and sensitivity analysis) should be repeated using the reduced parameter 

set.  Based on the updated Monte Carlo simulation results the remaining parameters should again 

be considered for potential elimination.  This process should be repeated until no parameters are 

eliminated after a Monte Carlo simulation experiment. 

After each iteration the parameter ranges of should be reexamined using the scatter plots. 

If there are obvious abnormalities in the data, such as extremely high travel times, or large num-

bers of recorded errors during the simulation then the range for that parameter should be reconsi-

dered.  Similarly if there is reason to believe that the range of values for that parameter should be 

larger, then that range should be modified as well. 
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6.2 Procedure Application Case Study: Cobb Parkway Model 

The model area is a 1.4 mile, eleven intersection segment of Cobb Parkway (U.S. Highway 41) 

in Cobb County, GA Figure 37. Cobb Parkway is a primary arterial in Cobb County, with four 

lanes in each direction.  The model was constructed using 2004 intersection AM peak count data. 

Controller signal timing data was obtained and modeled using the VISSIM NEMA signal con-

troller. The posted speed limit is 45 mph. Prior to model parameter calibration significant effort 

was spent on model development to ensure the correctness of the underlying model construction.  

Details on the base model development, corridor geometry, signal timing, etc, may be found in 

[40] and [57].    

 

Figure 37 Cobb Parkway Model and VISSIM Overview 
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Figure 38 Travel Time Segments along Cobb Parkway 

6.2.1 Initial Parameter Selection 

In the initial step, parameters that can be eliminated from consideration due to specific model 

characteristics are identified. For the Cobb Parkway model twenty-eight of the available parame-

ters were eliminated, leaving twenty-two parameters for further consideration. Twelve of the 

eighteen car following parameters were eliminated as this model only includes parameters re-

lated to Wiedemann (1974). Parameters associated with vehicle the acceleration and deceleration 

functions were also eliminated because the model focused only on signalized arterials (i.e. the 

Wiedeman (1999) equations for freeway operations were not considered).  Additional parameters 
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that are based on the mechanical capabilities of the average vehicle on the network were also not 

considered as there is little justification for changing their default values. Parameters relating to 

the acceleration functions were also not considered as the driver's acceleration decisions are like-

ly dominated by car following considerations due to the close spacing of signals and level of 

congestion. 

In addition, the general lane change behavior was set to free lane selection as Cobb 

Parkway does not have a designated "fast lane" and vehicles often pass each other on both the 

left and right sides. This also eliminates a parameter used only in conjunction with right-side rule 

instead of free lane selection behavior. All of the lateral behavior parameters were also eliminat-

ed as there is no lateral behavior present in this model.  

These reductions left twenty-two parameters for consideration. One additional parameter 

for the simulation run, random seed value, was added to allow for an exploration of the impact of 

randomness due to inherent model stochasticity to bring the total parameter set to twenty-three.  

6.2.2 Performance Measure Selection 

For the performance measures five travel time segments were chosen. Travel time data provides 

the advantages of being straightforward, easily interpreted, and reflective of model changes. The 

five travel time segments include two end-to-end segments, a segment over the most traveled 

route in the network, and two short two-intersection segments, Figure 38.  Segment #1 is the 

southbound end-to-end segment. It is 11,294 feet long and includes 10 intersections. Segment #2 

is the northbound end-to-end segment. It is 11,334 feet long and also includes 10 intersections. 
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The third segment is representative a typical commuter route. It is 6955 feet long and covers the 

most heavily traveled route on the network, from the northern arterial entrance to the intersection 

of Cobb Parkway and I-285. Segments #4 and #5 are shorter segments at 1670 feet and 1426 feet 

respectively that include two heavily traveled routes from the I-285 exit ramp to Cobb Parkway 

northbound and southbound. Each of these routes includes two traffic signals. 

6.2.3 Parameter Range Selection 

The parameter value ranges were chosen to be larger than typically used in similar studies but 

within any limits described in the VISSIM documentation. An initial set of simulations were un-

dertaken to evaluate the reasonableness of these broader limits using randomly varied parameter 

sets to ensure model stability and performance. Where parameter values resulted in unrealistic 

performance measures or a significant number of reported modeling errors the range is adjusted 

to exclude those values.  

The initial and final parameter ranges for the first iteration of the methodology are shown 

in the Table 12. An empty value in the final range column indicates that the parameter was not 

changed. 
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Table 12 Selected Parameter Ranges 

# 
Parameter Initial Range Final Range 

1 Desired Speed Distribution Range  ±0.0-10.0 mph  ±0.5-10.0 mph  
2 Look-ahead distance min  0-900 ft  0-300 ft  
3 Look-ahead distance max  500-1000 ft  500-1200 ft  
4 Number of observed vehicles  2-8     
5 Average standstill distance, ax  0.0-20.0 ft  2.0-8.0 ft  
6 Additive part of safety distance, bxadd  0.0-8.0  0.0-3.0  
7 Multiplicative part of safety distance, bxmult  0.0-8.0  0.0-3.0  
8 Maximum Deceleration (own)  -20.0 - -3.0 ft/s²     
9 Maximum Deceleration (trailing)  -20.0 - -3.0 ft/s²     
10 Accepted Deceleration (own)  -6.0 - -0.33 ft/s²     
11 Accepted Deceleration (trailing)  -6.0 - -0.33 ft/s²     
12 Reduction rate (own)  50-300  50-200  
13 Reduction rate (trailing)  50-300  50-200  
14 Waiting time before diffusion  20–80 sec  40–80 sec  
15 Min. headway (front/rear)  1.64-25.00 ft     
16 Safety distance reduction factor  0.0-1.0     
17 Max. deceleration for cooperative braking   -35.0 - -3.0 ft/s²     
18 Reduction factor for changing lanes before a signal  0.3-0.9     
19 Start upstream of stop line  200–600 ft     
20 End downstream of stop line  200–600 ft     
21 Emergency stop distance  6.56–30.0 ft     
22 Lane change distance  300–1000 ft  500–1000 ft  
23 Random seed value  1-999     
 

6.2.4 Calibration Parameter Set Determination 

To determine the final calibration parameters, a series of Monte Carlo simulation experiments 

are undertaken and parameters with minimal influence on the simulation outputs are eliminated. 

This process is repeated until no remaining parameters can be eliminated based on the results of 

the Monte Carlo simulations.  
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In the case study, three iterations were required before no parameters could be eliminat-

ed.  Each iteration began with the creation of 1000 sets of random parameter values (23 parame-

ters in the initial round) within their stated ranges using Microsoft Excel in conjunction with a 

Visual Basic script.  These parameter sets were used to create 1,000 corresponding VISSIM  in-

put files, for each of two volume cases (i.e. 100% AM volumes and 75% AM volumes) for a to-

tal of 2000 runs using a PERL script. While this value is approximately one order of magnitude 

higher than the minimum number required by the simulation variability at our selected level of 

significance (approximately 85 tests for each volume case, assuming a 10% run variability and 

4% desired accuracy) the greater number of tests allowed for easier visual examination of the 

resulting scatter plots. A modified version of the "multi-run" script, provided with VISSIM, was 

used to automate the model runs and to collect the output data (9).  

For this study a parameter had to demonstrate least a 4% effect on the mean travel time of 

at least two segments or an observable relationship in the scatter plots to be retained for subse-

quent iterations. Other thresholds could, of course, be considered and future studies will explore 

the impact of the threshold selection on method convergence. 

6.2.4.1 Iteration I 

The results from the 100% volume runs led to the elimination of 11 parameters that had a neglig-

ible effect on the travel time measurements. The retained and eliminated parameters and their 

impacts on travel times (Equation 1) are shown in Table 13 and Table 14 below.  
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Table 13 1st Round - Retained Parameters’ Effect on Mean Travel Times 
Travel Time Segment 

# Parameter #1 #2 #3 #4 #5 
1 Desired Speed Distribution Range  -0.32% 1.58% -0.18% -0.59% 3.15% 
5 Average standstill distance, ax  5.97% 7.62% 6.19% 8.44% 14.99% 
6 Additive part of safety distance, bxadd  6.20% 19.28% 7.14% 2.59% -5.61% 
7 Multiplicative part of safety distance, bxmult  4.45% 11.17% 4.86% 2.20% -0.72% 
8 Maximum Deceleration (own)  11.41% 1.15% 7.30% -1.11% -20.93% 
9 Maximum Deceleration (trailing)  4.48% -0.87% 2.60% -0.87% -7.94% 
15 Min. headway (front/rear)  17.71% 4.27% 12.54% -1.87% -28.78% 
16 Safety distance reduction factor  11.14% -0.70% 7.28% -1.85% -20.61% 
17 Max. deceleration for cooperative braking  7.85% -1.82% 4.45% -1.42% -9.90% 

18 
Reduction factor for changing lanes before 
a signal  1.61% 14.61% 2.96% 0.32% -0.08% 

22 Lane change distance  -17.91% -0.85% -11.85% 1.45% 22.94% 
 

Table 14 1st Round - Eliminated Parameters’ Effect on Mean Travel Times 

      Travel Time Segment 

# Parameter #1 #2 #3 #4 #5 

2 Look-ahead distance min 1.52% -1.94% 0.86% -1.26% -6.73% 

3 Look-ahead distance max -2.31% -0.39% -1.42% -0.05% 2.92% 

4 Number of observed vehicles -2.10% 0.52% -0.68% -0.15% -0.72% 

10 Accepted Deceleration (own) 1.91% -0.37% 1.71% 0.45% -2.31% 

11 Accepted Deceleration (trailing) 1.38% -2.50% 0.87% 0.40% -1.90% 

12 Reduction rate (own) -2.84% 3.28% -2.03% -0.25% 5.56% 

13 Reduction rate (trailing) 1.42% 2.10% 1.76% 0.34% -0.24% 

14 Waiting time before diffusion 2.06% 0.67% 1.65% -0.24% -3.68% 

19 Start upstream of stop line -0.41% -3.24% -0.47% -2.15% -5.38% 

20 End downstream of stop line -0.31% -2.80% -1.03% 0.40% 2.50% 

21 Emergency stop distance 1.59% 4.25% 3.10% 0.30% 0.62% 
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Figure 39 shows the average travel time along segment #3 versus parameter value for the 

minimum headway parameter and is illustrative of how scatter plots are used in the analysis.  

The plot shows a potential relationship between increasing travel times and increasing minimum 

headway values. Both this result and two results from two segments above the 4% impact 

threshold result in this parameter being retained for a subsequent iterations. Figure 40 illustrates 

the lack of an observable impact due to an elimated parameter (look ahead distance minimum). 

 

 

 

Figure 39 Mean Travel Times on Segment #3 vs. the Minimum Headway 
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Figure 40 Mean Travel Times on Segment #1 vs. the Look Ahead Distance Minimum  

 

It is noted that parameter #1, desired speed distribution range, was retained for the second 

iteration even though it failed to meet the sensitivity threshold since this parameter had shown 

significant impacts in other studies. Also, parameter 18, reduction factor for changing lanes 

before a signal, was retained. While only one travel time segment exceeded 4% the difference 

was large, exceeding 14%.  In addition the scatter plots indicated the parameter to be potentially 

significant.     

Similar results were obtained for 75% volume case.  The only difference between the two 

scenarios is that the 75% volume case did not include parameter #9, the maximum decelerating 

(trailing) parameter. 
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6.2.4.2 Iteration II 

For the second iteration the 11 remaining parameters from the 100% volume case and the 10 re-

maining parameters for the 75% volume case were carried forward. For those parameters elimi-

nated in the first iteration, the default values from the initial model are used. As mentioned pre-

viously, the random seed value is also included as an additional parameter to capture inherent 

stochasticity. The results from the second iteration are analyzed in a manner similar to that of the 

previous runs. In addition, comparisons were made between the results of the simulations from 

the first and second iterations to identify any changes in travel times that might result from unde-

tected interactions of the eliminated parameters. In Figure 41 the average travel times for all 

1,000 runs from each travel time segment are compared for both parameter sets. The similarity 

between these results helps support the first iteration parameter eliminations.  
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Figure 41 Comparison of Mean Travel Times from 1st, 2nd and 3rd Parameter Set Runs 

After completing the second iteration a list of retained parameters was generated for each scena-

rio. Note, the list of retained parameters was determined in a manner similar to that described in 

the first iteration. After second iteration of runs and analyses, parameters #1, desired speed dis-

tribution range, and #18, reduction factor for changing lanes before a signal, were eliminated – 

for both the 100% and 75% volume cases.   

6.2.4.3 Iteration III 

Similar to the second iteration, the nine remaining selected parameters from the 100% volume 

case and the eight remaining selected parameters for the 75% volume case were carried forward. 

For those parameters eliminated in the second iteration the default values from the initial model 

were used. Similar to iteration two Figure 41, above, shows the average travel times on each 
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segment from the third parameter set runs compared to the average travel times on each segment 

from the first and second parameter set runs. Overall, the results from the third iteration are very 

similar to iteration one and two, supporting the selection of the parameters thus far eliminated.  

From the results of the third iteration no parameters were identified as insignificant.  Thus, the 

third iteration is the last and these parameters represent the parameters that should be included in 

the model calibration process.  See Table 15 and Table 16 below for the final list of effective ca-

libration parameters. 

Table 15 Final 100% Vol. Scenario - Retained Parameters’ Effect on Mean Travel Times 
Travel Time Segment 

# Parameter #1 #2 #3 #4 #5 

5 Average standstill distance, ax  6.25% 5.74% 6.54% 9.19% 11.11% 

6 Additive part of safety distance, bxadd  4.95% 10.46% 5.62% 1.65% -11.67% 

7 Multiplicative part of safety distance, bxmult  3.80% 6.47% 4.32% 1.15% -4.96% 

8 Maximum Deceleration (own)  9.86% 1.29% 7.00% -2.08% -24.32% 

9 Maximum Deceleration (trailing)  5.54% 1.09% 3.78% -1.75% -10.37% 

15 Min. headway (front/rear)  17.50% 4.85% 13.10% -5.69% -40.46% 

16 Safety distance reduction factor  10.57% 2.39% 7.22% -4.96% -28.45% 

17 Max. deceleration for cooperative braking  8.59% 0.66% 5.48% -2.85% -15.16% 

22 Lane change distance  -16.61% -0.53% -12.14% 4.60% 32.19% 
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Table 16 Final 75% Vol. Scenario - Retained Parameters’ Effect on Mean Travel Times 
Travel Time Segment 

# Parameter #1 #2 #3 #4 #5 

5 Average standstill distance, ax  2.94% 1.89% 3.47% 4.75% 27.08% 

6 Additive part of safety distance, bxadd  3.34% 3.49% 4.65% 3.38% -3.11% 

7 Multiplicative part of safety distance, bxmult  2.30% 2.00% 2.87% 2.41% -0.25% 

8 Maximum Deceleration (own)  4.75% 0.77% 2.50% 3.45% -10.24% 

15 Min. headway (front/rear)  8.09% 1.01% 3.86% 1.88% -18.11% 

16 Safety distance reduction factor  4.75% 0.26% 2.26% 1.04% -9.70% 

17 Max. deceleration for cooperative braking  3.90% 0.33% 0.91% 0.25% -8.84% 

22 Lane change distance  -7.25% -0.36% -3.03% 0.20% 9.63% 
 

6.2.5 Desired Speed 

Of particular note in the preceding analysis is the elimination of the desired speed range parame-

ter.  Both iteration 1 and iteration 2 found the desired speed range to be insignificant. To further 

explore this somewhat counterintuitive result, we examined why this result might have an insig-

nificant effect on performance measures. The working hypothesis was that due to traffic condi-

tions on this corridor vehicles were unable to reach their desired speed (45 mph) thus greatly re-

ducing its significance as a model parameter.  

To test this hypothesis the runs were repeated using the 100% volume scenario and the 

iteration #2 parameter set with the average desired speed was lowered from 45 mph to 30 mph.  

Thus the considered maximum potential range of desired speeds would now be from 20 mph and 

40 mph respectively. The results from the Monte Carlo simulation experiments results for this 

new scenario now showed that for all three of the long travel time segments the desired speed 
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distribution range was one of the most influential parameters. Thus, while for the original model 

the desired speed range was found to be insignificant it is seen that for other model configura-

tions the parameter can be highly significant.  This highlights the need to consider parameters for 

each model as the impact of parameter calibration can vary from model to model.      

To further explore the effects of the desired speed range calibration parameter, while cor-

roborating the above hypothesis, an additional experiment was conducted using the NGSIM 

model introduced in Section 5.4. In the experiments discussed in Section 5.4 the desired speed 

range varied from 0 to 10 mile-per-hour. For the following experiments the desired speed para-

meter is allow to range from 0 to 20 miles-per-hour. Approximately 300 replicates of NGSIM 

corridor model were created, with each replicate using a different desired speed range expressed 

as the difference between maximum and minimum desired speed. The desired speed range para-

meter was the only parameter varied between replicates. For each replicate run the relevant travel 

time measurements extracted. Figure 42 presents a scatter plot of desired speed range versus av-

erage travel time for each segment. The red horizontal line in Figure 42 represents the average 

field travel time.   
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Figure 42 Average Travel-Time versus Desired Speed Range 

 

In all four cases there is little change in the mean or variability in travel over the desired speed 

ranges (Max – Min) of 0 to 20 mph. This result underlies the elimination of the desired speed 

range parameter from the list of calibration parameters, in the final stage of the advanced calibra-

tion procedure discussed previously as the maximum allowed variation was average desired 

speed +/- 10mph.  However, from the figure above, as the desired speed range increases beyond 

20mph (i.e. average desired speed +/- 10 mph) the average travel time estimates and travel time 
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variability increase in three of the four segments.  Thus it is again seen, that depending on the 

underlying base conditions (for instance, the variability in desired speed selected by drivers on a 

corridor) the importance of parameter change.  For this particular instance it is recommended to 

generally retain desired speed as a calibration as it has been demonstrated to influence model op-

erations under certain conditions.    

6.3 Advance Calibration Procedure Summary 

The previous sections described a general procedure for identifying parameters which should be 

considered for calibration of particular simulation models. For the case study (Cobb Parkway in 

Cobb County GA), application of this procedure resulted in the selection of nine parameters and 

eight parameters for two volume cases. 

The sensitivity-based procedure was effective in determining which parameters had a significant 

effect on the model. However, ultimately the construction of the model itself is more significant 

than the parameter values, as evidenced by only a few parameters influencing measured travel 

time by more than 10%. As such, parameter calibration should be used to fine tune a model, but 

the results using the default parameter values must already be reasonably close to the values 

from the field data in order for the calibration to be successful.  

The results from the application of this procedure also show important differences from 

previous studies. For instance, seven parameters previously used for calibration purposes were 

shown to be insignificant for calibration of the Cobb Parkway model. These seven parameters 

include: waiting time before diffusion, emergency stop distance, number of observed preceding 



 

138 

 

vehicles, accepted deceleration (own), accepted deceleration (trailing), reduction rate (own) and 

reduction rate (trailing). These parameters were included in the previous studies for varying rea-

sons however it is clear that a general set of critical parameters requiring calibration in all models 

does not exist. Application of the sensitivity-based parameter selection method avoids the ex-

pense of unnecessary calibration, including the potential costs of field data collection of these 

parameters. Thus, without confirmation of a parameter’s significance it is possible that insignifi-

cant parameters are essentially being calibrated to arbitrary values and significant parameters are 

being missed.   

In the future efforts of this research the discussed calibration procedure will be applied to 

the NGSIM data based experiment. First a base calibrated model will be developed.  As part of 

this development the critical parameter set will be identified. Given the calibrated base model the 

need and methodology to calibrated parameter in real time will be investigated.  For instance, 

might it be expected that parameter values change throughout a day, congested traffic versus un-

congested, morning versus evening, etc.    

Finally, as noted in the experimental results presented in Chapter 5 significant pedestrian-vehicle 

interactions was observed but not accounted for in the simulation. This pedestrian-vehicle inte-

raction had the potential to significantly affect arterial performance. The influence of pedestrians 

on vehicles should not be address through calibration of model but instead through direct inclu-

sion of pedestrians in the model. To model pedestrian-vehicle interaction VISSIM’s pedestrian 

model was examined to determine its ability to accurately reflect pedestrian behavior.  A detailed 
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study was undertaken on the test bed intersection of 5th Street and Spring Street. The following 

chapter describes this study.  
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7 MODELING PEDESTRAIN BEHAVIOR 

Many of the commonly utilized traffic simulation tools currently under-represent the complexity 

of pedestrian behavior and their interactions with the various components of the traffic network.  

While simulation packages have been developed specifically for representing pedestrians, their 

usage has generally been limited to modeling pedestrian behavior for special cases, such as a 

building evacuation, large pedestrian interactions (e.g. stadiums), transit centers, etc. [58–62].  

Although these packages utilize sophisticated behavioral algorithms for pedestrian simulation, 

they are usually not designed to specifically model pedestrian-vehicle interactions in the urban 

traffic environment.  

This section will explore the microscopic modeling of pedestrians crossing at an intersec-

tion with the use of VISSIM, while incorporating observed pedestrian behaviors at a crosswalk 

and the influence of pedestrian-vehicle interactions.   

7.1 Previous Works in Modeling Pedestrians  

The impetus of this study was a set of observations performed by the research team on the simu-

lation test bed. While observing pedestrian behavior, pedestrians appeared relatively uninflu-

enced by the pedestrian signal.  Instead, most pedestrians crossed whenever they found an ac-

ceptable gap in traffic, regardless of the pedestrian signal indication. 
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Several researchers have observed the similar issues with pedestrian rule violations.  For 

instance, a study performed by Virkler [63] in Australia he classified pedestrians as: “comply-

ing” (those who cross during the walk indication), “runners” (those who cross during the clear-

ance interval), and “jumpers” (those who cross during the red interval).  This study found that 

74.4% of pedestrians complied, and 15.8% were “jumpers” crossing on the red phase at oppor-

tune moments. Ishaque and Noland [64] noted that pedestrian compliance to signals should be 

taken into account, as the signal affects the perceived pedestrian efficiency of an intersection.  

They attempted to study the gap acceptance behavior of pedestrians crossing against the pede-

strian signal. One of their more immediate conclusions was that gap acceptance was dependent 

on vehicular volumes at the intersections. However, the study was limited as insufficient viola-

tions were observed to determine the distribution of gaps accepted by rule-violators and of rule-

violating versus rule-following pedestrians. Yang et al. [65] developed a model of Chinese pede-

strian behavior that accounted for gap-seeking behavior. They theorized that there were two 

types of pedestrians, law-obeying and “opportunistic.”  They observed that an average of 85% of 

pedestrians were “opportunistic”.  

There are a number of other research efforts that are focused on modeling observed pede-

strian behavior in a mixed-traffic simulation environment. Rouphail and Eads [66] used COR-

SIM to evaluate turning movement delay given a level of pedestrian flow. They compared this to 

other methods, including the 1994 HCM and Canadian method of predicting delay due to pede-

strians. CORSIM assigns delay values based on the level of pedestrian volumes (none, light, 

moderate, and heavy). Neither the HCM nor the Canadian methods include adjustments for vi-
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olating pedestrians, although the Canadian method specifically calls for the volume of pede-

strians who cross during the walk and pedestrian clearance phases. Wan and Rouphail [67] had 

previously looked at a gap-seeking models for roundabouts using ARENA. Schroeder and Rou-

phail [68] also looked at signalized crossing behavior in VISSIM at crossings near roundabouts. 

Numerous researchers have also studied simulating pedestrian activity to quantify its ef-

fects on turning movements at signalized intersections. Milazzo et al. [69] noted that the High-

way Capacity Manual (HCM) has measures for empirically determining delay for right and left 

turning vehicles from one way streets. They investigated the impact of total pedestrian volumes 

on turn movement delays. They determined that the HCM should add an adjustment factor for 

pedestrian and cyclist saturation rates. Coyemans and Herrere [70] also investigated factors that 

could be applied to delay equations based on pedestrian volumes, but did not consider gap-

seeking pedestrian behavior. Hubbard et al. [71] reversed the question and examined the delay 

that turning vehicles imposed on pedestrians at crosswalks. Based on their study, the authors rec-

ommended that the HCM be modified to include the impacts that turning vehicles have on pede-

strians. 

Expanding beyond the individual intersection, Virkler [72] simulated pedestrian behavior 

in a traffic network. In the Virkler study, the author developed a method of determining travel 

time along pedestrian corridors that incorporated link travel times and time spent in queues at 

nodes. Virkler also noted the effect of non-compliance at walk signals and found that pedestrians 

who did not comply with signals, on average, reduced their delay by 22%. 
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These studies recognize the same general pedestrian behavior that was observed in the research 

test bed.  It is apparent that, to varying degrees, pedestrians across cultures can be grouped into 

complying (i.e. those who follow the pedestrian indications), and gap-seeking (i.e. those who 

cross the street, regardless of the pedestrian signal indication, if the gaps in traffic are sufficient).  

This behavior is even acknowledged in the HCM 2010, where effective pedestrian walk time 

may be increased to reflect “illegal pedestrian behavior” [73].  Thus, to realistically model pede-

strians in today’s traffic simulation tools these behaviors must be reflected.  Therefore, the objec-

tive of the efforts reported in this paper is focused on an attempt to replicate observed pedestrian 

behavior at a crosswalk, accounting for pedestrian-vehicle interaction within a microscopic simu-

lation environment. 

7.2  Methodology 

Pedestrian data were collected for the south crosswalk at the intersection of Spring Street and 

Fifth Street in midtown Atlanta, Figure 43.  Spring Street is a four lane, one-way, southbound 

street with a 35 mph speed limit.  Fifth Street is a two lane, two-way, east-west street, with a 25 

mph speed limit. This intersection is located in an area known as Technology Square (Tech 

Square) and is home to a number retail shops (including the campus bookstore), instructional 

buildings, and commercial businesses, as well as the Georgia Tech Hotel and Conference Center.  

Given the relatively consistent pedestrian demands, this site offers a desirable location observing 

pedestrian behavior. 
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7.2.1  Data Collection and Processing 

The primary means of collecting pedestrian and vehicular data is by video recording. Tech 

Square is outfitted with VDS cameras that stream video and traffic data as a part of a NSF real-

time simulation project. Covered zones include the intersection proper as well as upstream on 

each approach (Figure 44 and Figure 45).  Data were extracted from the video using both manual 

methods and using automated reduction software. 

7.2.1.1 Pedestrian Data 

Pedestrian data collected includes the number of pedestrians, walk speed, and individual pede-

strian arrival and departure times. Data collection was conducted on July 8, 2010 from 12:00 PM 

to 1:00 PM, September 16, 2010 from 12:00 PM to 1:00 PM and from 5:00 PM to 6:00 PM.  

Figure 44 provides the intersection camera view and Figure 45 contains the upstream approach 

view for Spring Street. Approximately 400 pedestrians were detected over the one-hour period.  

The average walk speed was estimated at 4 feet per second. The research team manually record-

ed time stamps from the video for the arrival and departure of each pedestrian. A pedestrian was 

considered to have arrived when he/she entered the waiting zone, defined as the sidewalk area 

within approximately 15 feet of the crosswalk curb line and departed when the pedestrian 

stepped from this zone into the crosswalk, see Figure 44. The difference between the arrival and 

departure represents the waiting time experienced by the pedestrian while waiting to use the 

crosswalk (minus a waiting zone transition time of 2 seconds). The average waiting time per pe-

destrian was found to be approximately 21.5 seconds. 



 

145 

 

7.2.1.2 Vehicular Data 

Traffic counts were collected on the Spring Street and 5th Street approaches. In addition, the 

timestamp, speed, and lane number were recorded as each vehicle crossed the upstream detectors 

on Spring Street, see Figure 45. Signal timing plans were obtained from the City of Atlanta and 

field-verified. The intersection operates under semi-actuated control with loop detectors on 5th 

Street. The cycle length for the signals during this time period was 110 seconds. 

 

 

Figure 43  Data Collection Site for Pedestrian Study 
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Figure 44 Camera View for Pedestrian Data Collection  
 

 

Figure 45 Midblock Detector Camera Data Acquisition View 
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7.2.2 Simulation Model 

VISSIM 5.3 was utilized for this effort. VISSIM, a widely used off-the-shelf traffic simulation 

program, is a discrete, stochastic, time-step-based microscopic simulation model [39].  This be-

havior-based multi-purpose traffic simulation program was developed to model a wide range of 

traffic conditions including freeway, arterial, and public transit operations.  In VISSIM, all ve-

hicles are modeled individually, based on a psycho-physical driver behavior model developed by 

Wiedemann [39]. Recently, to better represent pedestrian behavior, VISSIM introduced a new 

pedestrian model based on the Social Force Model [74]. The Social Force Model for pedestrian 

dynamics is based on Newtonian physics and pedestrian interaction is modeled according to so-

cial, psychological, and physical forces. A pedestrian’s motion is influenced not only by their 

route choice but also by other pedestrians and obstacles. 

7.2.2.1 Vehicle and Pedestrian Interaction Modeling in VISSIM 

VISSIM can model pedestrians under one of two paradigms: vehicular traffic mode or pedestrian 

traffic mode. When modeling a pedestrian area (for example a room or floor of a building) the 

pedestrian traffic mode is utilized and the pedestrian area is defined along with the pedestrian 

origins and destinations. A pedestrian determines its own path through the area according to the 

Social Force Model. Multiple pedestrian areas may be modeled (for example multiple floors of a 

building) and can be connected via ramps or stairs. Interactions between vehicles and pedestrians 

cannot, however, be modeled in pedestrian mode.  A link in vehicle traffic mode must be created 

then converted to a “pedestrian link” [39]. The pedestrian link then utilizes the same mechanisms 
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(e.g. priority rules) as vehicles to model the interaction between vehicles and pedestrians. 

In contrast to vehicular traffic links, pedestrian links are multidirectional.  As with ve-

hicles, different pedestrian classes may be created and different attributes assigned to each class.  

Signal heads may be placed at the ends of the pedestrian link to represent pedestrian signals.  

Multiple signal heads may be used, each associated with a different pedestrian class. A pede-

strian will consider a signal head if and only if its pedestrian type is assigned to that signal head.  

Two pedestrian classes were created to model complying pedestrians (i.e., those pedestrians that 

do not cross when the signal indication is a steady DON’T WALK), and gap-seeking pedestrians 

(i.e., those that do not follow the signal head indications, crossing whenever an appropriate gap 

is available in vehicle traffic.)  

To facilitate the interaction in the crosswalk between vehicle and pedestrians, priority 

rules are utilized. Similar to the priority rules in vehicular traffic modeling, transportation ana-

lysts may set up priority rules between a pedestrian link and each conflicting vehicular lane. In 

the study area, the critical interaction is between vehicles traveling southbound on Spring Street 

and pedestrians crossing eastbound or westbound on 5th Street. Gap-seeking pedestrians may 

attempt to cross during the steady DON’T WALK when the southbound vehicle traffic is receiv-

ing a GREEN indication. During the steady DON’T WALK, individual priority rules are applied 

for each lane of Spring Street to realistically model pedestrian gap selection behavior. For exam-

ple, westbound pedestrians are designed to yield to vehicles in Lane 1 and Lane 2 within a time 

headway of 4 seconds and 6 seconds of the crosswalk, respectively. Lane 3 and Lane 4 priority 

rules are designed such that vehicles should not be within 6 seconds of the crosswalk at the time 
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the pedestrian is expected to reach the lane. Figure 46 illustrates the priority rules for pedestrians 

crossing westbound, where gap-seeking pedestrian will not depart from the waiting area curb line 

if a vehicle is in the any of the zones indicated by the arrows and dotted lines. 

The proceeding priority rules are not required for complying pedestrians. Crossing beha-

vior for complying pedestrians is governed by pedestrian signal heads and pedestrians will not 

cross when a DON’T WALK indication is displayed. In accordance with guidance from the 

Highway Capacity Manual, “effective walk time” was used in estimating complying pedestrian 

time available to start crossing. An additional four seconds was added to the seven seconds of 

displayed WALK indication in the field, such that the modeled effective WALK indication is 11 

seconds. Interactions may also occur between pedestrians (complying and gap-seeking) and ve-

hicles turning southbound from 5th Street onto Spring Street. These interactions occur when pe-

destrians have the right-of-way, i.e. a WALK indication is displayed. For this analysis vehicles 

are modeled to yield to pedestrians.  
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Figure 46 VISSIM Priority Rule Configuration for Ga p-Seeking Pedestrians 

 

7.2.3 Experiment 

Pedestrians were assigned as complying and gap-seeking pedestrians in the simulation runs. The 

complying pedestrians only entered the crosswalk during modeled WALK indication (i.e. the 

effective walk time as discussed above). This behavior was achieved by using signal heads at the 

end of the pedestrian links. Gap-seeking pedestrians did not follow the pedestrian signal during 

the modeled steady DON’T WALK, choosing to enter the crosswalk based solely on the availa-

bility of an acceptable gap in the traffic stream. During the modeled WALK indication gap-

seeking pedestrians ignored all priority rules and crossed as though they were complying pede-
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strians.  

Eleven ratios of gap-seeking to complying pedestrians are modeled, from 100% comply-

ing (thus 0% gap-seeking) to 0% complying (100% gap-seeking) in 10% increments. Ten repli-

cates were completed for each selected ratio. Data collected from each replicate includes pede-

strian arrival times, pedestrian departure times from the waiting area, and pedestrian waiting 

time.   

To allow more direct comparison of the field data to the VISSIM results, the arrival pat-

tern of the southbound traffic on Spring Street was also replicated. As previously stated, the time 

stamp of traffic crossing the upstream detector in the field was recorded.  These data were used 

to generate a VISSIM fkt file. An fkt file allows a user to directly control the entry time of all 

vehicles on a link. Thus, the Spring Street arrival pattern over the hour was set to match the ac-

tual observed arrival stream. 

7.3 Results 

The following presents results from the field data and simulation experiment.   

7.3.1 Field Results 

While processing the data from the video, one of the more prominent pedestrian behaviors that 

was noticed was the number of gap-seeking pedestrians using the intersection. A majority of pe-

destrians that arrived during the DON’T WALK indication appeared to be gap-seeking, crossing 

when an acceptable gap was available. For instance, the Figure 44 snapshot was taken during a 
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DON’T WALK interval (indication not visible in image), however a number of pedestrians were 

crossing. This behavior was observed throughout the data collection period, over a majority of 

the cycles. Figure 47 displays the total crossings (y-axis) over the data collection period as a 

function of time of cycle (x-axis). Pedestrian data are included from approximately 32 cycles.  

For example, over the data collection period, 10 pedestrians were observed entering the cross-

walk 86 seconds into the cycle. This figure clearly indicates that a significant number of pede-

strians enter the crosswalk during the DON’T WALK interval. 

To determine whether there is a notable relationship between pedestrian arrival and de-

parture patterns, the pedestrian arrivals into the waiting zone are plotted in Figure 48.  It appears 

that the departure pattern is generally independent of the arrival pattern. However, the departure 

pattern does appear correlated with the pedestrian signal (Figure 47). At the start of the pede-

strian DON’T WALK interval (t = 21) there is a generally low likelihood of pedestrian crossing.  

Approximately 55 seconds into the DON’T WALK interval (t=75), the number of pedestrians 

crossing increases significantly. The likelihood of pedestrian crossing remains high through the 

remainder of the DON’T WALK interval. At the start of the WALK and Flashing DON’T 

WALK, the pedestrian departures are similar to the arrivals.  

This crossing pattern results from gap-seeking pedestrian behavior. At the start of the 

DON’T WALK interval, the southbound vehicle traffic receives a GREEN indication. While the 

southbound vehicle queue is clearing, the gap-seeking pedestrians are unable to cross Spring 

Street. Once the queue dissipates the likelihood of a gap-seeking pedestrian finding a gap in-

creases, depending on the southbound vehicle arrivals. Thus, the observed behavior of gap-
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seeking pedestrians using the later portion of the DON’T WALK interval is directly related to 

the southbound traffic queue clearance time and subsequent traffic flow, not the pedestrian signal 

indication. 

 

Figure 47 Number of Pedestrian Crossings versus Cycle Time 

Figure 48 Pedestrian Arrival Pattern versus Cycle Time 

 

7.3.2 Simulation Results 

Figure 49, , and Figure 51 shows representative results from a typical replication for complying 
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to gap-seeking ratios of:  100% to 0%, 50% to 50%, and 0% to 100%, respectively. As with Fig-

ure 47 and Figure 48, the pedestrian crossings (y-axis) represent the cumulative crossings over 

the full data collection time period (i.e. 1 hour). Figure 49, with 100% complying, limits pede-

strians crossing to the effective WALK interval. The simulated departure behavior clearly fails to 

match field observations. Figure 50, with 50% complying and 50% gap-seeking, demonstrates 

some of the aspects of the field data (i.e. pedestrians crossing after southbound queue clearance) 

however the ratio of pedestrians crossing during the WALK indication to the steady DON’T 

WALK appears higher than field observations. Figure 51, with 100% gap-seeking provides the 

closest match to the observed field data. Pedestrian arrival rate was also examined to investigate 

potential correlations between the arrival and departure distribution. As with the field data, it was 

observed that the arrivals and departures appear independent, with the simulated and field arrival 

patterns looking very similar, implying that the simulated departed rates are not determined by 

the distribution of pedestrian arrivals.  
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Figure 49 Simulated Pedestrian Crossing Behavior, Complying to Gap-Seeking Ration 
100% to 0% 

Figure 50 Simulated Pedestrian Crossing Behavior, Complying to Gap-Seeking Ration 

50% to 50% 
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Figure 51 Simulated Pedestrian Crossing Behavior, Complying to Gap-Seeking Ration 0% 
to 100% 

 

Table 17 provides a breakdown of the various complying pedestrian to gap seeking pedestrian 

ratios and their respective average waiting times across the ten replications. The average pede-

strian waiting time decreases as the gap-seeking fraction increases, with the ratio of 90% to 95% 

gap-seeking to complying pedestrians most closely matching the field waiting time observations 

of 21.5 seconds. 
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Table 17 Complying-Gap-Seeking Ratios versus Average Waiting Time 
Percent 

Complying 
Percent Gap-

Seeking 
Average Waiting 

Time 
Maximum of 10 
Replicate Runs 

Minimum of 10 
Replicate Runs 

100% 0% 46.9 50.6 44.0 

90% 10% 43.0 44.9 41.1 

80% 20% 40.9 43.9 37.4 

70% 30% 38.5 40.9 35.5 

60% 40% 36.1 39.4 32.7 

50% 50% 32.8 35.7 30.5 

40% 60% 29.9 31.9 29.0 

30% 70% 27.2 29.1 24.9 

20% 80% 24.4 27.9 22.8 

10% 90% 22.2 23.7 20.4 

0% 100% 20.3 22.5 18.7 
 

7.4 Discussion 

It is readily seen when comparing the curb departure behaviors over a cycle observed in Figure 

47 (field data) and Figure 49 (100% complying pedestrian) that the simulation model fails to 

capture the real world. The field data clearly demonstrates a high willingness of pedestrians to 

cross during the DON’T WALK interval. Modeling 100% complying pedestrians does not allow 

this behavior to be reflected, yielding significantly higher pedestrian waiting values (which could 
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lead to errors if applied in multi-modal transportation policy analyses). Figure 50 displays the 

crossing behavior for a mix of pedestrian types, 50% gap-seeking and 50% crossing. In this si-

mulation, the pedestrian behavior begins to more closely resemble the field data. However there 

are still notably lower percentages of pedestrians crossing during DON’T WALK than are ob-

served in the field (and the simulated pedestrian waiting time values are still significantly higher 

than observed in the field).   

The patterns of curb departures shown in Figure 47 and Figure 51 (100% gap-seeking pe-

destrians) are very similar. However, a notable difference between these two figures is that more 

pedestrians in the field observation data cross earlier during the DON’T WALK interval. One 

potential reason for this observation is that pedestrians in the real-world have more varied gap 

acceptance criteria than pedestrians in VISSIM, including pedestrians that force a crossing and 

cause approaching vehicles with the right-of-way to slow down. This supposition is supported by 

a few noted field observations where pedestrians are seen running across the crosswalk or cross-

ing the street in stages, waiting in the street as conflicting vehicles pass by in an adjacent lane.  

These observations regarding the similarity between the field data and simulation model 

are support by the waiting time data.  As the percentage of complying pedestrians deceases and 

percentage gap-seeking pedestrians increases (Table 17) the average pedestrian wait time de-

creases.  This decline is expected as increasing the proportion of gap-seeking pedestrians lowers 

the average waiting time due to their willingness to disregard the traffic signal and depart from 

the curb sooner than complying pedestrians. With 100% complying pedestrians, the average 

waiting time per pedestrian is 46.9 seconds, compared to a field measured waiting time of 21.5 
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seconds, a 118% higher simulated waiting time than field measured waiting time. For 100% gap-

seeking pedestrians, the simulated waiting time was 20.27 seconds, around 6% lower than the 

field data.While additional effort is needed (see challenges below) it is reasonable to infer from 

these results that the percentage of complying pedestrians is high and failure to account for this 

behavior will result in an inaccurate reflection of real world behavior.  

In light of the strong similarity between the observed and simulated pedestrian behavior, 

it is important to recall that in this modeling effort that the simulated vehicle arrival stream was 

set to match the field arrivals. Thus, the gaps seen by the simulated pedestrians were very similar 

to those noted in the field observations. If the arrival stream was modeled using VISSIM vehicle 

generation (for the same flow rate) the modeled pedestrian behavior is likely to change.  For in-

stance, ten replications of the simulation were run using VISSIM vehicle generation for 100% 

gap-seeking pedestrians. The average simulated pedestrian waiting time increased to 24.2 

seconds/pedestrian (from 21.5 seconds/pedestrian with the arrivals matched). While practically 

this is a small change in waiting time it does demonstrate that the vehicle arrival pattern influ-

ences the model performance, representing an area of future needed research.   

7.4.1 Simulation Challenges 

As seen in the previous section, the simulated environment is capable of providing a reasonable 

reflection of the observed pedestrian behavior. However, there are a number of caveats that 

should be highlighted which will play an integral role when duplicating this methodology. 
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Firstly, the VISSIM model’s output appeared to be highly sensitive to the pedestrian re-

lated parameters. For instance, pedestrian gap acceptance criterion, priority rule configurations, 

and effective crosswalk width all had the potential to significantly influenced model results. In 

this effort the value(s) of each of these parameters were established by examining previous 

works, seeking professional input, conducting condensed field studies, and performing limited 

sensitivity analyzes. However, ultimately final parameter values are selected based on the mod-

eler’s judgment in an attempt to reflect realistic crossing behaviors. Future efforts should explore 

methods to field measure these parameters, determine the model sensitivity to these parameters, 

and develop guidance to model developers on the selection and calibration of parameter values.  

For example, to account for the potential effect of pedestrians walking outside of the painted 

crosswalk limits, an effective crosswalk width should be used. This width will typically result in 

the modeled crosswalk having a greater width than that painted in the street. When choosing an 

effective crosswalk width, it is important that the analyst be careful when estimating this value. 

An improper estimate may produce inaccurate results, as this width affects pedestrian throughput 

rate across the street, and subsequently pedestrian delay.   

Secondly, the variability in pedestrian and vehicle arrival and discharge process, pede-

strian gap selection, pedestrian to turning-vehicle interaction, etc. all result in field data that are 

more erratic than are simulated by VISSIM. For example, even under the 100% gap-seeking case 

there are no pedestrian crossings between 20 and 50 second. In the field data there are a few 

crossings during this time period.  This is likely of a result of VISSIM not reflecting the high 

short term vehicle gap variability that exists, particularly in the urban environment.  
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Finally, it is noted that providing a field measured percentage of gap-seeking pedestrians 

for use in a simulation model is a challenging endeavor. If a pedestrian chooses to cross during a 

DON’T WALK indication that pedestrian may be clearly identified as gap-seeking. However, if 

a pedestrian arrives during a DON’T WALK indication and does not cross, the pedestrian’s deci-

sion to gap-seek or not can’t be readily field measured (except in obvious cases) as that pede-

strian may have been gap-seeking but simply unable to find a sufficient gap. Additionally, it is 

not possible to make any definitive gap-seeking or complying statements about pedestrians that 

arrive and cross during the WALK interval. An area of future research will be methods to field 

measure the variability in gap-acceptance criteria as part of the pedestrian attributes.  

7.4.2 Experiment Replication 

Finally, in an effort to build confidence in the discussed approach to pedestrian simulation mod-

eling the study was repeated for the same intersection, over the same time period, on September 

9th, 2010. With a 100% pedestrian gap-seeking rate and VISSIM generated vehicles the simu-

lated pedestrian waiting time was 21.0 seconds versus a field measured waiting time of 18.6 

seconds per pedestrian. Plotted pedestrian departures were also similar between the field and si-

mulated data. While a single successful replication presented pedestrian simulation methodology 

does not fully validate the approach, it continues to support the method and need for accurately 

reflecting pedestrian behavior. 
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7.5 Concluding Remarks 

Pedestrian movements are inherently more complex than vehicular movements, and it is because 

of this complexity that pedestrian behavior has not always been appropriately accounted for in 

traffic simulation packages. Accounting for such behavior will lead to a greater understanding of 

pedestrian-vehicle interactions and will help improve multi-modal transportation planning and 

simulation.  As a result, more informed decisions may be made regarding pedestrian and vehicle 

activity in the urban environment. 

In looking to bring about a greater understanding in pedestrian-vehicle interactions, the 

presented research attempted to represent realistic pedestrian behavior in VISSIM, a microscopic 

traffic simulation program. The modeling yielded comparable observed and simulated distribu-

tions of when pedestrians choose to use the crosswalk during the signal cycle and estimates of 

average pedestrian waiting time. When these sets of information were compared for the observed 

behavior and simulated behavior it was seen that the pedestrian behavior is strongly related to the 

cross street traffic queue clearance time and subsequent traffic flow, not the pedestrian signal 

indication. Capturing this interaction significantly enhances the models’ ability to reflect ob-

served field performance.  

Despite the success of this modeling effort a number of challenges were identified. For 

instance, the VISSIM model’s output appeared to be highly sensitive to the pedestrian related 

parameters, such as pedestrian gap acceptance criteria, priority rule configurations, and effective 

crosswalk width. Also, the field variability in pedestrian and vehicle arrival and discharge 

process, pedestrian gap selection, pedestrian to turning-vehicle interaction, etc. result in field be-
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havior that is more erratic that the simulated behavior. Ultimately, the modeler’s judgment and 

fine tuning of the model played a strong role in the ability of the simulation to realistically reflect 

crossing behaviors.  Many of the issues raised in this effort merit additional exploration to allow 

modelers to make more informed choices. 

From this research effort, it can be concluded that successful representation of realistic 

pedestrian behavior is feasible in microscopic traffic simulation. This result is promising as it 

seeks to be a part of the foundation of efforts geared to capturing pedestrian-vehicle interaction.  

In capturing this interaction, the ability for the simulated environment to accurately reflect the 

performance measure has increased. The next step in the test will be a comparative analysis of 

the vehicle behavior in the simulation and field given that pedestrian behavior is now appro-

priately reflected. This step is necessary to allow for the incorporation of pedestrians into the 

real-time platform. However, a final critical issue that will need to be addressed in the implemen-

tation of a real-time simulation that incorporates pedestrians will be the ability to implement pe-

destrian detection in the field.    
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8 VISUALIZATION OF ARTERIAL PERFORMANCE 

One of the final components of this research effort is to present the information, which has been 

modeled by VISSIM, to the consumers of arterial performance measures.  The research team has 

developed a web-based tool that the consumers may visit to evaluate the current performance of 

the arterial under study.  The following chapter will provide some of the more pertinent details of 

the web-based tool. 

The visualization mechanism has three components: 1) the representation of individual 

vehicles, 2) the depiction of changes in traffic conditions as a function of time and space, and 3) 

the historical presentation of key arterial performance measures. Details of these components are 

presented below with reference to the NGSIM corridor study discussed earlier. 

The first component presents traffic on a microscopic scale. Individual vehicle are 

represented as they travel through the corridor. This animated graphic provides users will an 

immediate sense of the traffic conditions along the corridor. The animation is powered by (x,y) 

coordinate data of individual vehicles which are produced by VISSIM. The animated movement 

of vehicles is layered on top of a Google map image of the study area. This form of representa-

tion allows the user to easily relate observed traffic conditions to actual locations at which it is 

occurring, Figure 52. In Figure 52  the cyan circles represent vehicles traversing the network and 

the dynamic colored arrows reflect the current indication of each signal head along the corridor.  
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Figure 52 Real-Time Vehicle Representation along the Peachtree Study Corridor 

 

The second component delivers time-space diagrams (TSD) to users. These diagrams are com-

prised of individual vehicle trajectories along the corridor. Each point on a trajectory represents a 

vehicle’s place in time, distance traveled along the corridor and instantaneous speed.  Time space 
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diagrams provide a comprehensive view of corridor performance. They present information re-

garding platoon movement and the effectiveness of a corridor’s current signal timing plan. In 

addition they provide immediate approximations for the number of vehicles on the corridor, 

queue lengths, and travel speed and travel time along the corridor. Figure 53 is a sample time-

space diagram.   

 

 

 

Figure 53  Sample Time-Space Diagram for Northbound Travels 
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The third component of the visualization mechanism present users with additional performance 

measure estimates. For each link of the corridor, graphs of historical and current values of flow 

(number of vehicles), queue length, and average speed are provided. In addition average travel 

times for the entire length of the corridor, both directions, is illustrated. Figure 54  illustrates a 

composite of the speed, queue length and flow graphics.   
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Figure 54 Composite Graphic of Speed, Queue Length and Flow Plot 
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The above graphics provide travelers and facility managers with comprehensive knowledge re-

garding the operation of the study corridor.  It is hoped that with this information at hand, such 

consumers will be better equipped to make decisions to aid in increasing the efficiency with 

which the facility is being used and managed.      

A demonstration website has been created to present arterial performance measures.  This 

website is being driven in real-time by a simulation model.  Data to the simulation model is be-

ing provided from the NGSIM data utilized in Experiment #4, discussed in Chapter 5. The site is 

still in the alpha testing stage. The website may be accessed through 

http://realtime.ce.gatech.edu. 
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9 FUTURE RESEARCH AND IMPLEMENTATION PLAN 

The preceding chapters demonstrate the feasibility an online, data-driven, simulation tool to es-

timate arterial performance measures in real-time.  However, five primary opportunities have 

been identified as needing further effort: 1) improved accuracy of vehicular volumes entering the 

study network, 2) real-time estimations of turning movement distributions, 3) synchronize field 

and model traffic signal control, 4) calibration, and 5) reflecting congestion resulting from fac-

tors outside the simulated area.  The team anticipates that effort in these areas will lead to more 

accurate and reliable performance measure estimates.    

9.1 Vehicular-Volume Accuracy 

Errors associated with vehicular volumes at the study zone boundary were prevalent in the third 

field experiment. When observing vehicles entering a camera’s detection zone the two most 

comment error types were: 1) a single vehicle (usually a larger vehicle) triggered detections in 

adjacent lanes or 2) a vehicle failed to trigger a detection zone.   

9.2 Turning Movement Distribution 

In the current effort turning movement proportions are based on historical data and the path of a 

vehicle through an intersection is randomly assigned based on these proportions.  As noted in the 

chapter 5 experiments this inability to determine turning movements in real-time is a potential 
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source of error.  Estimating turning movement proportions has aspects in common with the de-

velopment of models that estimate dynamic origin-to-destination flows in a small network [35].  

Liu et al. [35] and Chang and Tao [75] present a summary of some the more notable works in 

turning movement proportion estimation.  Future efforts will attempt to build on these and other 

resources in the development of a real-time turning movement estimation procedure. 

9.3  Field and Simulated Signal Synchronization 

In the third field experiment it was noted that the simulated signal indications could differ from 

field. Given the strong correlation between signal operations and arterial performance measures, 

it is critical that the field and simulated signal state is synchronous. To establish synchronization 

between traffic signals in the two environments, the team will again seek to understand prior ef-

forts and possibly employ or build up their contributions. One of the works that will be closely 

examined is presented in Ban et al.[76]. The authors of this article estimated signal timing plans 

using piecewise linear intersection delay curves and a two-step least square estimation algorithm. 

Although this method may not be suited for the current real-time approach, the details of this me-

thod will provide insights as to how to achieve and automate signal synchronization. To develop 

a robust signal synchronization plan the team will also investigate means to stream signal states 

into the simulation. 
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9.4 Calibration 

In this effort extensive effort was expended on off-line calibration of simulation models. Future 

efforts should explore expansion of this calibration to an online calibration, continually adjusting 

the model parameters in real time. In addition, the pedestrian modeling efforts should be ex-

panded to allow for incorporating the influence of pedestrians on simulated traffic, particularly in 

urban areas with high pedestrians demands.   

  

9.5 Boundary Conditions 

A final issues that was noted as part of this effort is related specifically to the capabilities of the 

simulation model. The challenge of real-time simulation is to mirror dynamic traffic conditions 

in real time. As part of these efforts it was observed that the simulation model was capable of 

reflecting congested conditions when the cause of the congestion (i.e. bottleneck) resided within 

the simulation boundaries. However, if the source of congestion was outside the simulation 

boundaries and spilled back into the simulation region this was not captured. For example, if an 

intersection outside of simulated region resulted in queues blocking an upstream intersection 

within the simulation boundary this would not be reflected. The underlying challenge is the de-

velopment of an ability to restrict flow on simulation exit links such that the blockage due to 

downstream congestion is reflected. Future efforts will be aimed at dynamically controlling the 

flow rate at nominally unrestricted exit points in real time.  
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9.6 Next Steps 

This effort has utilized detectorization and equipment specifically installed for this project. This 

installation allowed for highly detailed information to be streamed real time. The next test should 

seek to implement a real-time simulation on an arterial corridor utilizing data streams with a po-

tentially lower fidelity. For instance, the current test bed streams per vehicle detections from the 

VDS. Where this data accuracy is not available the level and impact of data aggregation should 

be determined. For instance, a field test could be developed on a TACTICS based system, deter-

mining what data is available, how it could be streamed, what are the aggregation levels, etc.   

The real time research effort should also continue to explore the issues discussed in sec-

tions 9.1 through 9.5, i.e. entering vehicle volume accuracy, determination of real time turning 

movements, synchronization of field and simulated signals, online calibration, and downstream 

congestion influencing boundary conditions. Improvements in each of these areas will improve 

the performance of overall real time simulation system. However, the next phase of the project 

could eliminate several of these issues (pedestrian impacts and downstream congestion influen-

cing boundary conditions) through targeted selection of the next site, allowing for a more fo-

cused effort.   

In addition a broader field test would also need to explore potential communication chal-

lenges. The current test bed had the benefit of utilization of the campus fiber network. To be suc-

cessful the next implementation should investigate the communications between the detectors 

and the data processing center and communication between the processed data node and the si-

mulation in a location without this benefit.  
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Finally, with the rich data streams being leveraged as part of the real time simulation ef-

fort the next implementation should incorporate an analytical model based directly on the availa-

ble detector and signal data to compliment and support the simulated results. A combined simu-

lated and analytic approach has the potential to address the challenges unique to both approach-

es. 
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10 CONCLUSION 

As seen a wide variety of advanced technological tools have been implemented throughout 

Georgia’s transportation network to increase its efficiency. This research project explored the 

feasibility of integrating real-time data streams with an arterial simulation to support an arterial 

performance monitoring system.  Such information will facilitate increased efficiency in facility 

utilization by enabling more informed decisions in the use and management of Georgia’s trans-

portation facilities.  

In the initial stage of this effort a federation (i.e. integration) of two simulation instances 

to be used as a conceptual test bed was developed. It was seen using this test bed that the under-

lying real time approach could be successful in a simulated environment. Next a “hardware-in-

the-loop” framework was developed that directly inputs detector data into a simulation model 

during runtime. Successful integration of the data stream with VISSIM enabled a field evaluation 

of the framework on an arterial using streaming point sensor data. A key attribute of the federa-

tion is the ability for the simulation to receive a PVR (per vehicle record) detector data stream in 

a real-time, allowing for the use of multiple detector technologies.   

Using this ability to stream real time detection into the simulation an in-field test bed 

with detectors that are capable of streaming traffic data in real time to a central server was 

created. Utilizing this test bed several real time simulation experiments were undertaken. These 

experiments demonstrated the ability of the real time simulation, for the given system, to provide 
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reasonable estimates of travel time. However, in several instances difference were noted. These 

difference where attributed to several causes: detector errors at simulation boundary detectors 

resulting in volume discrepancies between the simulation and field, differences between individ-

ual vehicle turning movements in the field and simulated environment, challenges in the syn-

chronization of field and simulated signal indications, model calibration, and downstream con-

gestion influencing simulations boundary conditions. Future efforts will seek to continue to im-

prove the real time environment in each of these areas. 

To test the proposed real time approach in an environment that allowed for eliminating or 

significantly reducing the errors resulting from the proceeding issues a “pseudo” real time field 

test was undertaking using the FHWA Next Generation Simulation (NGSIM) program. Utilizing 

this data set to create a pseudo real time data stream it is seen that the real time approach is capa-

ble of providing accurate performance measures given high quality data inputs.  Future efforts 

will seek to explore the relationship between degradations in data accuracy and performance 

measure estimates. 

In addition, a web-based interface was developed presenting the arterial performance 

measures in real time. The data generated by the simulation is polled in real-time to generate 

time space diagrams and summary charts and statistics of the various performance measures. An 

animated representation of traffic moving through the study corridor is also provided  

In summary, it has been seen through this research effort that real time simulation pro-

vides a potential opportunity to determine high fidelity arterial performance metrics in real time.  

As stated challenges still exist to a wide spread implementation however this initial effort devel-
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oped techniques for addressing many of the challenges of real time simulation, identified future 

challenges that remain to be addressed, and created a foundation upon which future implementa-

tions of real time arterial simulation may be based.    
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